3

Predictive Analytics: Selecting Useful Forecasting Techniques

This chapter provides an overview of the most widely used forecasting techniques available for solving demand forecasting problems. One of the first things you will need when you start putting a forecasting model together is a listing of projection techniques. We describe a way of classifying projection techniques into qualitative and quantitative approaches. Whatever the technique, you need to start the selection process with

- a statement of the forecasting problem in terms of the stages of a product/service life cycle
- an economic theory stating what changes will affect demand for a product or service
- a gathering of market intelligence from field sales forecasters, market research studies, and competitive analyses
- a listing of plans for new products and special events or promotions.

The most common application of a projection technique involves some form of smoothing to diminish or highlight an important aspect of the data. Familiarity with the moving average helps to motivate the basic ideas behind a smoothing technique for forecasting.

All Models Are Wrong. Some Are Useful

Many different forecasting techniques are available, ranging from elementary smoothing methods to more complex ARIMA and econometric models. How are we to select the most appropriate one for a particular situation? Firstly, there is no best forecasting model, only appropriate and credible models for the context to which they are being applied. How can we expect to derive accurate forecasts before we have asked the right questions? Delving straight into the methods and models is no substitute for a careful examination of the data first, followed with the listing of the pros and cons of what is available. Attributed to the world-renowned statistician George E. P. Box (1919–2013) is the saying, "All models are wrong. Some are useful".

In most circumstances, a demand forecaster will be well advised to develop multiple models in a given situation and maintain them as the best selection. For what performs best in one instance may very well rank lower in the next forecasting cycle.

Forecasting techniques can be classified as either **qualitativ e** or **quantitative**. This distinction may have no bearing on the accuracy of the forecast achievable by a particular approach. What is the difference between a qualitative and quantitative technique? To describe what one of two mutually exclusive things are, we only need to define one. It is easier to define quantitative as something that involves *mostly* numbers and *some* judgment. Then, the concept of qualitative is the opposite–*mostly* judgment and *some* numbers.

Quantitative techniques are characterized by a rigorous data acquisition procedure along with a mechanical application of techniques. Qualitative techniques may lack rigorous data acquisition and involve techniques that are more intuitive and requiring more human judgment.

Qualitative Techniques

Qualitative techniques provide a framework within which running models (including forms of quantitative analyses, such as decision trees and data mining) are brought to bear on a particular forecasting problem. The objective of a qualitative technique is to bring together in a logical, unbiased, and systematic way all information and judgments that relate to the demand variables of interest. These techniques use informed judgment and rating schemes to turn qualitative information into numeric estimates.

Qualitative techniques are most commonly used in forecasting something about which the amount, type, and quality of data are limited.

Familiar qualitative techniques include the panel of consensus, Delphi method, market research (focus groups), surveys, visionary forecasts, and historical analogies. Treatments of these subjects can be found in forecasting textbooks, Wikipedia pages, and other search results available online. A brief description of some of these qualitative techniques follows.

Panel consensus. Perhaps the most widely practiced qualitative technique, a panel consensus can be as simple as having managers sit around a conference table and decide collectively on the forecast for a product or service. Bringing executives from various business disciplines together increases the amount of relevant information available to the decision makers.

A further advantage of the approach is the speed with which forecasts can be obtained, particularly in the absence of complete historical or market data. This advantage may be offset by the lack of accountability for the forecast.

Also, the typical problems of group dynamics become apparent here and are compounded by the relative ranks in management. Unfortunately, the person with the best insight may not have sufficient weight to sway the whole group decision.

Delphi method. This method is used to obtain the consensus of a panel of experts about a problem or issue. The Delphi method attempts to avoid the possible negative aspects associated with group dynamics (e.g., suppression of minority opinions, domination by strong individuals who may be incorrect, unwillingness to change public positions, and bandwagon effects). Therefore, instead of bringing these experts together in a debating forum, the Delphi method relies on the distribution of questionnaires to the experts with an admonishment not to discuss the problem among themselves. They may not know who the other members of the panel are, and they are not provided with individual opinions or estimates.

The initial questionnaire may be used to state the problem and to obtain preliminary estimates and reasons or assumptions behind them. The responses are then summarized and fed back to the panel. Members with widely differing estimates are asked to review the responses and, if appropriate, revise their estimates. Through several iterations it may be possible to refine the differences among experts to a usable range of opinion. However, there is no attempt to force an expert to accept the majority opinion. If an expert feels strongly about another position and can articulate it persuasively, the method provides a range of opinion, which may be desirable in conditions of high uncertainty.

Criticisms of the Delphi method include questions about panel members' true level of expertise, the clarity (or outright vagueness) of questionnaires, and the reliability of forecasts.

Historical analogue. This method uses the history of similar products as a reasonable guide in situations such as the introduction of a new product. For example, the introduction of digital television into households can be related to the earlier introduction of color television; perhaps the type of growth curve is comparable here.

The depletion of natural resources may be viewed similarly. Wood burning was replaced by coal, which was replaced by oil. As oil resources are eventually depleted, and if nuclear power continues to face problems, we find that solar and wind technology will become a serious energy alternative.

Historical analogues may also be useful in the shorter term when a new product replaces and improves on its predecessor. For example, each new generation of computers can be evaluated in terms of price and performance relative to the existing market. Comparing the current improvements in price and performance with previous new product introductions, given their rate of price and performance improvement, can suggest the appropriate introduction or replacement rate.

Surveys. Business surveys have been widely used throughout the world to measure economic movements such as manufacturing production in a country. The variables used in these surveys are typically qualitative in nature with only a few responses possible, such as Larger, Smaller, and Unchanged.

Some examples of variables used in a manufacturing production survey include volume of production, production capacity, prices, orders, purchases, and time of deliveries. The responses are then further calibrated into barometer-type series in which the difference between larger and smaller responses is summarized.

The resulting series are reported by central statistical agencies for use by business economists and managers to get a pulse of the overall economy in relation to their own particular industry sector.

Visionary technological forecasting. This approach offers a variety of techniques that attempt to predict future technological trends. Often, a set of "S" curves are constructed from data representing factors such as speed, efficiency, horsepower, and density to predict the characteristics of the next generation of technological products. For example, the capacity of a memory chip to store a given number of bits of information can be plotted over time (often using semi-logarithmic scales). By extrapolating this growth curve, the forecaster in effect predicts the next breakthrough. Similarly, the constant dollar cost per chip can be plotted and extrapolated. Because there are relatively few data values for most items being forecast, significant judgment is required and assumptions must be developed and evaluated. There are physical and theoretical limits to certain factors such as speed not exceeding the speed of light and efficiency not exceeding a certain value.

Morphological research. This method attempts to identify all possible parameters that may be part of the solution to a problem. A (multidimensional) box is created showing all possible combinations of parameters. Each possibility is then individually evaluated. By determining the number of parameters by which the proposed technology differs from present technology, we can evaluate which breakthroughs are most likely to occur.

Role playing. In a role-playing scenario, several panel members are assigned the role of the competitor. (One of the potential drawbacks of using the Delphi and panel consensus techniques for forecasting demand is that the competitor is typically not represented.) Several panel members are made responsible for developing information about the competitor and for creating competitor strategies and reaction plans. In a simulated forecasting session, assumptions developed by the home team are challenged by the competition. The separation of roles may allow a greater range of possibilities to be explored and more realistic assumptions to be developed than would otherwise occur.

Decision trees. Decision trees are used to help decide upon a course of action from a set of alternative actions that could be taken. Alternative actions are based on selected criteria such as maximization of expected revenues and minimization of expected costs. The method uses probability theory to assess to the odds for the alternatives. In most cases, however, the probability assessments are subjective in nature and cannot be tested for validity. Decision trees are frequently used in making pricing and product-planning decisions and for developing hedging policies to protect against future currency changes in international financing arrangements.

Consider a simple situation in which a firm is deciding how to respond to a published request for bids for 1000 units of a nonstandard product. The firm's managers believe there is a 30% chance of winning the contract with a bid of \$1000 per unit and a 70% chance of losing the contract to a competitor. A win would result in \$1 million in revenue (1000 units x \$1000/unit). At a price of \$750 per unit, the probability of a win is expected to be 60%. A win of \$750 would result in \$750000 in revenue.

If the decision is made to go with a bid of 1000/unit, the expected value is equal to the probability of a win (0.3) multiplied by the revenue (1 million) plus the probability of loss (0.7) multiplied by the revenue (0.0), or 300000. Similarly, for the alternative 750 bid the expected value is (0.6) (750000) + (0.4) (0.0), or 4500000. If the managers' expected probabilities are correct, a lower bid would yield more revenue.

The profit margin for the alternative bid is smaller but the probability of winning the bid is substantially increased. If a firm has little available capacity, a \$1000 bid might be appropriate. If it wins the bid, the job will be very profitable. If they lose the bid, they still have plenty of business. A firm with a smaller backlog of orders on hand may be more interested in keeping the volumes up to help maintain revenues and operating efficiencies.

Quantitative Approaches

If appropriate and sufficient data are available, then quantitative techniques can be employed. Quantitative techniques can be classified into two more categories: **stochastic** (statistical) and **deterministic**.

Quantitative approaches are often classified into statistical and deterministic.

Deterministic methods. These methods incorporate the identification and explicit determination of relationships between the variable being forecast and other influencing factors. Deterministic techniques include anticipation surveys, growth curves, leading indicators (Chapter 7), and input-output tables.

Input-output analysis. This method was developed by Nobel laureate Wassily Leontief (1905–1999) as a

method for quantifying relationships among various sectors of the economy. This forecasting approach, generally used for long- range forecasts, can be used to answer one or more of the following questions: What is happening in the economy or industry sector? What is important about different aspects of the economy or industry sectors? How should we look at the economy or industry sectors? How should we look at changes in the economy or industry sectors?

Dynamic systems modeling. This branch of modelling involves building evaluation models that replicate

how systems operate and how decisions are made. In a business environment, the analyst models the flows of orders, materials, finished goods, and revenues and subsystems are developed for functional areas such as marketing/selling, pricing, installation/maintenance, research, product development, and manufacturing. The information and operational **feedback** systems are also modeled. The objective might be to evaluate alternative policies to determine the combination of policies and

strategies that will result in growth in assets employed and profitability.

Pioneered by Jay Forrester (1918-2016), the equations that describe the system are not based on correlation studies; rather, they are descriptive in nature.

For example, the number of salespeople this month equals the number last month plus new hires minus losses. Equations are then developed describing how hires and losses are determined If an individual salesperson can sell a given amount of product, the desired sales force equals the desired total sales divided by the quota per salesperson. Hires are initiated when the actual sales force size falls below the desired level.

In a similar manner, a set of equations is developed that represents the behavior of the system or business. **Assumptions** are established and the model is exercised using an evaluation language incorporated in computer software. A properly developed model should be able to simulate past behavior and provide insights into strategies that can improve the performance of the system.

Self-Driven Forecasting Techniques

Statistical (stochastic) techniques. These techniques focus entirely on patterns, pattern changes, and disturbances caused by random influences. This book extensively treats quantitative techniques as **methods** (moving averages and time series decomposition) and **models** (State Space and regression analysis), with the distinction being that models explicitly include a random error assumption as the *certain* uncertainty component.

Within statistical techniques, there are essentially two approaches. The first approach is best illustrated by a **time series decomposition** method, discussed in Chapter 5. The primary assumption on which this methodology is based is that the historical data can be decomposed into several *unobservable* components, such as trend, seasonality, cycle, and irregularity, and that these components can then be analyzed and projected by component into the future. A *self-driven* forecast is then obtained by combining the projections for the individual components.

A decomposition method is an approach to forecasting that regards a time series in terms of a number of unobservable components, such as trend, cycle, seasonality, and irregularity.

An underlying assumption made in a time series approach is that the factors that caused demand in the past will persist into the future. Time series analysis then helps to identify trends in the data and the growth rates of these trends. For instance, the prime determinant of trend for many consumer products is the growth in the numbers of households.

Time series analysis can also help identify and explain cyclical patterns repeating in the data roughly every two, or three, or more years - commonly referred to as the business cycle. A **business cycle** is usually irregular in depth and duration and tends to correspond to changes in economic expansions and contractions.

Trend, seasonality, and cycle are only abstractions of reality. These concepts help us think about how to structure data and models for them.

In Chapter 7, we show how these concepts can be effectively used to make a qualitative **turning-point analysis** and forecast. Other uses of time series analysis include inventory forecasts dealing with daily or weekly shipments of units over short-term sales cycles or lead times, sales forecasts dealing with dollarbased volumes on a monthly to annual basis (this also includes seasonality, which is related to weather and human customs), and forecasts dealing with quarterly and annual economic time series.

A second approach comprises a set of time series techniques that include the model-based approaches associated with the State-Space (an integrated family of exponential smoothing and ARIMA models) and econometric modeling methodologies, discussed in Chapters 8 and 9.

A model-based approach to forecasting represents the situation usually in terms of mathematical equations with stochastic error terms.

The econometric approach may be viewed as a cause-effect methodology. Its purpose is to identify the drivers responsible for demand. The econometric models of an economy, for example, can be very sophisticated and represent one extreme of econometric modeling. These models are built to depict the essential quantitative relationships that determine output, income, employment, and prices. It is general practice in econometric modeling to remove only the seasonal influence in the data prior to modeling. The trend and cyclical movements in the data should be explicable by using economic and demographic theory.

The Detroit model, illustrated in Figure 1.13 in Chapter 1, is an example of how an econometric system is used in the telecommunications industry. The growth in revenues might be analyzed, projected, and related to business telephones in service, a measure that is related to the level of employment. It is not necessarily assumed that the drivers that caused demand in the past will persist in the future; rather, the factors believed to cause demand are identified and forecast separately.

There is often a finer distinction made within the model-based approaches: (a) the Box-Jenkins (ARIMA) methodology versus (b) the econometric approaches. Although they share similarities in their mathematical formulations, these two model-based approaches offer significant practical differences in the way relationships among variables are constructed and model parameters are interpreted.

As part of a final selection, each technique must be rated by the demand forecaster in terms of its general reliability and applicability to the problem at hand, relative value in terms of effectiveness as compared to other appropriate techniques, and relative performance (accuracy) level. With selection criteria established, the forecaster can proceed to produce a list of potentially useful extrapolative techniques. An understanding of the data and operating conditions is the forecaster's primary input now. This knowledge must, however, be supplemented by a thorough knowledge of the techniques themselves.

Combining Forecasts is a Useful Method

Rule-based forecasting employs dozens of empirical rules to model a time series for forecasting. These rules are distilled from published empirical research, surveys of professional forecasters, and recorded sessions with forecasting experts. The result of a rule-based forecasting procedure is a combining forecasting method.

A number of extrapolative procedures are fit to a time series, such as a random walk, a least-squares trend line, or an exponential smoothing method. At each forecast lead-time, the methods' projections are averaged by a set of rules that determines how to give weights to the various components of the combined model. For example, a possible rule is that the weight assigned to the random walk component of the combined model is raised, from a base of 20%, if recent trends depart from the global trend, there are shifts detected in the level of the series, or the series is considered suspicious in that it seems to have undergone a recent change in pattern.

Incorporating informed judgment into the extrapolations can further enhance rule-based procedures that an exponential smoothing technique is unable to do directly.

A rule-based forecast is based on empirical rules to model a time series for forecasting.

Informed Judgment and Modeling Expertise

Figure 3.1 (*left*) Time plots of a three-period and 12-period moving average on 29 annual values of a housing starts series.

Figure 3.2 (*right*) Time plots of a three-period and 12-period moving average on 29 annual values of a mortgage rate series.

When describing complexity (e.g., reality in terms of simplified methods such as moving averages), clearly no single approach can be considered universally adaptable to any given forecasting situation. The assumptions and theories on which the extrapolative techniques are based limit their appropriateness, reliability, and credibility. The forecaster should be careful to avoid using techniques for which the data characteristics do not match the assumptions of the method.

Later, when dealing with linear regression models (in Chapter 10), we will develop a relationship between the annual housing starts data and the annual mortgage rates. Logically, these two variables should be related in the sense that in the construction industry mortgage rates influence housing starts.

On the surface, there does not appear to be much similarity when comparing the basic time plots (Figures 3.1 and 3.2). However, after applying some business and modeling domain knowledge, we uncover a potentially useful, predictive relationship between the two variables.

Figure 3.3 (*left*) Time plot of year-by-year revenue changes in the pharmaceutical product. Figure 3.4 (*right* Time plot of a monthly revenue series for a pharmaceutical product over a four-year period. (Source: Figure 3.4)

Figures 3.3 and 3.4 depict the year-over-year percentage changes in units sold (shipped) of a monthly series of a pharmaceutical product and the revenues during the same period for a 54-month period. Figure 3.3 shows a revenue series dominated by large fluctuations around a constant level of approximately - 800. Figure 3.4 is dominated by a declining trend, whereas the annual changes are quite volatile.

If the trend in the original data are predominantly linear, the annual changes would fluctuate about a constant level. Could there be any economic, demographic, or political influences of an additive or multiplicative nature? What projection techniques should be used in planning a forecasts for these data?

Bear in mind first that a greater number of techniques are appropriate for the time horizon one year ahead than are appropriate for two-year-ahead forecasts. As we approach forecasts two or more years out, exponential smoothing and ARIMA time series models become less applicable.

Also apparent is that more techniques handle trending data than handle cyclical data. If we assume a turning point will occur in the second year, exponential smoothing and trending models are no longer adequate, because they do not have the appropriate forecast profile.

In terms of accuracy of a forecast for the one-year-ahead horizon, the State Space approach (exponential smoothing and ARIMA models), regression analysis and econometrics are the most useful. If there is a turning point expected in the forecast period, univariate exponential smoothing and ARIMA models may not be useful.

If we consider time constraints and the desire to present an easily understood technique, the exponential smoothing and linear regression approaches should also be considered tor two-year-ahead forecasts. Different conclusions might result, however, when

- shorter time horizons are involved
- data gathering and computational costs are important
- accuracy requirements are less stringent
- time is not a constraint
- the ease of understanding and explaining forecasting approaches is extremely important.

A Multimethod Approach to Forecasting

The purpose of using more than one technique is to ensure that the forecasting approach will be as flexible as possible and that the forecaster's judgment (which is so critical to the demand forecasting process) is not overly dependent on one particular forecasting technique. It is not uncommon to see forecasters develop a search for one "best" forecasting technique and then use that technique almost exclusively, even in an ongoing forecasting process. Such a preference can become easily established because of the highly specialized nature of some of the techniques.

One of the lasting myths about forecasting is that complex models should be more accurate than simple models. Some forecasters uncritically prefer the most sophisticated statistical techniques that can be found. Remember Einstein's quote at the head of this chapter: "Everything should be made as simple as possible, but not simpler."

The accuracy of an extrapolative technique, however, is not necessarily a direct function of the degree of its sophistication. In many cases, this tendency can greatly reduce the effectiveness and credibility of a forecasting model because complex models may become unbelievable when unexpected pattern changes occur in the time series. A simpler model, on the other hand, may remain relatively unaffected by the change.

We recommend that two or more approaches be used every time to describe the historical behavior of the data and to predict future behavior. In essence, this allows us to evaluate alternative views of the future.

When "running" models, it is essential to provide uncertainty and risk level estimates, in terms of forecast prediction limits, associated with plausible alternatives. A comparison can be made of the alternative views of the future, hence increasing the chances that the derived forecast numbers are useful and credible.

The Complete Chapter 3 can be found in the book:

Contents

Demand Forecasting: A Data-Driven Process	Error! Bookmark
not defined.	
What Is New?	Error! Bookmark
not defined.	
Scope	Error! Bookmark
not defined.	

c	Coverage	Error! Bookmark
	not defined.	
C	Courseware	Error! Bookmark
	not defined. Drganization	Errori Bookmark
	not defined.	
[Dedication	Error! Bookmark
	not defined.i	
4	Acknowledgments	Error! Bookmark
	Chapter 1 - WHY Demand Forecasting is So Important	to Supply
	Chain Professionals and Managers	to ouppiy
2 -	Inside the Crystal Ball	Frrorl
	Bookmark not defined	EITOT
	Determinants of Demand	Error! Bookmark
	not defined.	
[Demand Forecasting Defined	Error! Bookmark
	not defined.	Fundad Baselina alt
```	not defined	Error! Bookmark
1	The Role of Demand Forecasting in a Consumer Data-Driven Supply Chain	4
l. I	s Demand Forecasting Worthwhile?	7
\	Nho Are the End Users of Demand Forecasts in the Supply Chain?	8
L F	earning from Industry Examples	9 10
1	The Demand Planner's Dilemma: Is a Forecast Just a Number or Something More?	13
Crea	ating a Structured Forecasting Process	14
г	The PEER Methodology: A Structured Demand Forecasting Process	15
Cas	e Example: A Consumer Electronics Company	16
F	PEER Step 1: Identifying Factors Likely to Affect Changes in Demand	17
I	The GLOBL Product Lines	18
T	The Marketplace for GLOBL Products	18
F	PEER Step 2: Execute to Select a Forecasting Technique	20
F	PER Step 3: Evaluate Forecasting Woders	23
Get	ting Insights into Forecasting New Demand for Products and Services	23
Tak		97
TUK		21
	<b>Chapter</b> 2 -Smarter Forecasting is Mostly about Data:	
11	Improving Data Quality through Data Exploration and Visualization	29
<b>X</b> ]	Smarter Forecasting Is Mostly about Data	30
E	Exploring Data Patterns	30
ا بامیرا	earning by Looking at Data Patterns	31 <b>21</b>
Judg		
Dat	a Visualization	35
1	Time Plots	36
S	catter Diagrams	37
DISP	naying Data Distributions	39

Overall I	Behavior of the Data	39
Stem-an	d-Leaf Displays	40
Ouantile	ss. Quantile Plots	42 
Creating D	Data Summaries (Resistant and Robust!)	.44
Centrali	ty	45
Resistan	t Centrality: The Trimmed Mean	45
Resistan	t Variability: Median Absolute Deviation from the Median	46
Resistan	t Variability: The Interquartile Range	47
Detectin	g Outliers with Resistant Measures	48
The Need	for Nonconventional Methods	.49
M-Estim	ators	50
A Nume	rical Example	50
Why Is the	Provide the second s Second second s Second second se	.53
Case Exan	nple: GLOBL Product Line B Sales in Region A	.54
Takeaway	s	.56
	Chapter 3 - Predictive Analytics: Selecting Useful Forecasting	Techniques 57
		50
	All Models Are Wrong. Some Are Useful	.58
Qualitat	ive Techniques	58
Quantita	ative Approaches	61
		~~

Q	uantitative Approaches	61
Se	elf-Driven Forecasting Techniques	62
Co	ombining Forecasts is a Useful Method	63
In	formed Judgment and Modeling Expertise	64
Α	Multimethod Approach to Forecasting	65
Some	e Supplementary Approaches	66
м	larket Research	66
N	ew Product Introductions	66
Pr	romotions and Special Events	67
Sa	ales Force Composites and Customer Collaboration	67
N	eural Nets for Forecasting	68
A Pro	oduct Life-Cycle Perspective	68
A Pro	ototypical Forecasting Technique: Smoothing Historical Patterns	70
Sr	noothing with Moving Averages	71
w	/hy Moving Average Forecasting Needs to be Swept into the Dustbin	74
Α	Final Note:Uncertainty is a Certain Factor	77
w	eighting Based on the Most Current History	77
A Spi	readsheet Example: How to Forecast with Weighted Averages	79
Cl	hoosing the Smoothing Weight	
Fc	precasting with Limited Data	
E۱	valuating Forecasting Performance	
Take	aways	82
	<b>Chapter</b> 1 - Taming Uncertainty: What You Need to Know :	about Measuring
	Forecast Accuracy	83
	The Need to Measure Forecast Accuracy	84

Lack of Bias	85
What Is an Acceptable Precision?	
Ways to Evaluate Accuracy	89
The Fit Period versus the Holdout Period	89
Goodness of Fit versus Forecast Accuracy	90
Item Level versus Aggregate Performance	90
Absolute Errors versus Squared Errors	91
Measures of bias	91
Measures of Precision	93
Comparing with Naive Techniques	96
Relative Error Measures	97
The Myth of the MAPE and How to Avoid It	
Are There More Reliable Measures Than the MAPE?	99
Predictive Visualization Techniques	
Ladder Charts	99
Prediction-Realization Diagram	
Empirical Prediction Intervals for Time Series Models	
Prediction Interval as a Percentage Miss	104
Prediction Intervals as Early Warning Signals	
Trigg Tracking Signal	
Spreadsheet Example: How to Monitor Forecasts	
Quick and Dirty Control	107
The Tracking Signal in Action	
Adapting the Tracking Signal to Other Spreadsheets	109
Mini Case: Accuracy Measurements of Transportation Forecasts	
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways	
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor	
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns	
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns	119 119 asonality, Trend, 119 <i>I Forecasts of Upco</i> 119
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality	119 119 asonality, Trend, 119 <i>I Forecasts of Upco</i> 119 119
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations	110 111 asonality, Trend, 11 <i>I Forecasts of Upco</i> 110 119 121
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns	110 111 asonality, Trend, 11 <i>I Forecasts of Upco</i> 11 119 121 125 128
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns	110 111 asonality, Trend, 11 <i>I Forecasts of Upco</i> 11 119 121 125 128 128
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns Exploring Components of Variation	119 119 119 119 119 119 121 129 128 128 128 128 128 129
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns Exploring Components of Variation	110 111 112 112 113 114 115 116 117 119 121 125 128 128 128 128 128 128 129 130
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns Exploring Components of Variation Contribution of Trend and Seasonal Effects. Interpreting the Residual Table	110 111 112 112 113 114 115 119 121 125 128 128 128 128 128 128 128 128
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns Exploring Components of Variation Contribution of Trend and Seasonal Effects. Interpreting the Residual Table A Diagnostic Plot and Test for Additivity.	110 111 112 112 113 114 115 119 119 121 125 128 128 128 128 128 128 128 128
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns Exploring Components of Variation Contribution of Trend and Seasonal Effects. Interpreting the Residual Table A Diagnostic Plot and Test for Additivity The Median Polish.	110 111 112 112 113 114 115 119 119 121 125 128 128 128 128 128 128 128 128
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns Exploring Components of Variation Contribution of Trend and Seasonal Effects. Interpreting the Residual Table A Diagnostic Plot and Test for Additivity The Median Polish Unusual Values Need Not Look Big or Be Far Out	119 119 119 119 119 119 121 121
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor	110 111 112 112 113 114 115 117 119 119 119 121 125 128 128 128 128 128 128 128 128
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns Exploring Components of Variation Contribution of Trend and Seasonal Effects Interpreting the Residual Table A Diagnostic Plot and Test for Additivity The Median Polish Unusual Values Need Not Look Big or Be Far Out Step 1: Trading-Day Adjustment	119 119 119 119 119 119 121 129 121 129 129
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles. Seasonality Irregular or Random Fluctuations. Weekly Patterns Trading-Day Patterns Exploring Components of Variation Contribution of Trend and Seasonal Effects Interpreting the Residual Table A Diagnostic Plot and Test for Additivity. The Median Polish. Unusual Values Need Not Look Big or Be Far Out The Ratio-to-Moving-Average Method Step 1: Trading-Day Adjustment Step 2: Calculating a Centered Moving Average	119 119 119 119 119 119 121 125 128 128 128 128 128 128 128 128
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways	119 119 119 119 119 119 119 121 125 128 128 128 128 128 128 129 130 131 132 134 137 137 138 139
Mini Case: Accuracy Measurements of Transportation Forecasts Takeaways Chapter 5 - Characterizing Demand Variability: Sea Uncertainty Factor How Business-Cycle Data Analysis Can Lead to More Insightfu Economic Downturns Trends and Cycles Seasonality Irregular or Random Fluctuations Weekly Patterns Trading-Day Patterns Exploring Components of Variation Contribution of Trend and Seasonal Effects Interpreting the Residual Table A Diagnostic Plot and Test for Additivity. The Median Polish. Unusual Values Need Not Look Big or Be Far Out The Ratio-to-Moving-Average Method Step 1: Trading-Day Adjustment Step 3: Trend-cycle and Seasonal Irregular Ratios Step 4: Seasonally Adjusted Data	110 111 112 113 114 115 116 117 117 118 119 121 125 128 128 128 128 128 128 128 128

APPEND	IX: A Two-Way ANOVA Table Analysis	142
Percer	nt Contribution of Trend and Seasonal Effects	143
Takeawa	πys	144
Chapter	6 - Dealing with Seasonal Fluctuations	145
	Seasonal Influences	146
ALA	Removing Seasonality by Differencing	147
	Seasonal Decomposition	148
	Uses of Seasonal Adjustment	150
	Multiplicative and Additive Seasonal Decompositions	151
Decom	position of Monthly Data	151
Decom	position of Quarterly Data	154
Seasor	nal Decomposition of Weekly Point-of-Sale Data	
Census S	easonal Adjustment Method	160
The Ev	olution of the X-13ARIMA-SEATS Program	160
Why U	se the X-13ARIMA-SEATS Seasonal Adjustment Program?	
A Fore	cast Using X-13ARIMA-SEATS	
Resistan	t Smoothing	162
Mini Cas	e: A PEER Demand Forecasting Process for Turkey Dinner Cost	167
Takeawa	7ys	173
	Chapter 7 - Trend-Cycle Forecasting with Turning Points	175
	Demand Forecasting with Economic Indicators	176
	Origin of Leading Indicators	176
1	Use of Leading Indicators	179
	Composite Indicators	
Revers	se Trend Adjustment of the Leading Indicators	
Source	es of Indicators	
Charact	terizina Trendina Data Patterns	<b>185</b>
Onaraol		4.05
Autoco	prrelation Analysis	
The Co	nrelogram	100 189
Trend-	Variance Analysis	
Using Pr	essures to Analyze Business Cycles	
Mini Cas	e: Business Cycle Impact on New Orders for Metalworking Machinery	197
1/12 P	ressures	
3/12 P	ressures	199
12/12	Pressures	199
Turning	Point Forecasting	200
Ten-St	ep Procedure for a Turning-Point Forecast	200
Altern	ative Approaches to Turning-Point Forecasting	201
Takeawa	7ys	201
	Chapter 8 - Big Data: Baseline Forecasting With Exponenti Models	al Smoothing <b>201</b>
🦗 🛰 dā 👃	What is Exponential Smoothing?	204

Smoothing	Weights	
The Simple	Exponential Smoothing Method	
Forecast Proj	files for Exponential Smoothing Methods	209
Smoothing I	Levels and Constant Change	210
Damped and	d Exponential Trends	
Some Sprea	dsheet Examples	217
Trend-Seaso	onal Models with Prediction Limits	222
The Pegels (	Classification for Trend-Seasonal Models	226
Outlier Adju	Istment with Prediction Limits	226
Predictive V	'isualization of Change and Chance – Hotel/motel roomroom demand	
Takeaways		231
••••	Chapter 9 - Short-Term Forecasting with ARIMA Mode	els <b>23</b> 3
	Why Use ARIMA Models for Forecasting?	234
	The Linear Filter Model as a Black Box	235
A Model-Buil	ding Strategy	237
Identificatio	on: Interpreting Autocorrelation and Partial Autocorrelation Functions	
Autocorrela	tion and Partial Autocorrelation Functions	
An Importa	nt Duality Property	
Seasonal AR	RMA Process	
Identifying N	onseasonal ARIMA Models	243
	-	
Identificatio	on Steps	
Models for	Forecasting Stationary Time Series	
White Noise	e and the Autoregressive Moving Average Model	
One-Period	Ahead Forecasts	
L-Step-Ahea	d Forecasts	
Inree Kinds	of Short-Term Trend Widdels	
A Compariso	on of an ARIMA (U, 1, U) Model and a Straight-Line Model	
Seasonal ARI	MA Models	
A Multiplica	tive Seasonal ARIMA Model	252
Identifying	Seasonal ARIMA Models	254
Diagnostic Ch	hecking: Validating Model Adequacy	255
Implementing	g a Trend/Seasonal ARIMA Model for Tourism Demand	256
Preliminary	Data Analysis	257
Step 1: Iden	tification	257
Step 2: Estir	nation	258
Step 3: Diag	nostic Checking	259
ARIMA Mode	ling Checklist	262
Takeaways		263
Postcript		263
👝 🤋 Cha	apter 10 - Demand Forecasting with Regression Models	265
Who	at Are Regression Models?	266
VVIIC	Regression Curve	
The F	1051 C331011 Cul VC	
The F A Sim	iple Linear Model	267
The F A Sim The L	east-Squares Assumption	267 268
The F A Sim The L CASE: Sales (	and Advertising of a Weight Control Product	267 268 <b>269</b>

Some Exa	imples ar Regression with Two Evalgnatory Variables	271 <b>273</b>
Accorcing A	Model Adequacy	270 975
Assessing in	notions and Data Visualization	<b>275</b>
Achieving	rations and Data visualization	273
Some Per	ils in Regression Modeling	277
Indicators f	for Qualitative Variables	281
Use of Inc	dicator Variables	281
Qualitativ	ve Factors	
Dummy V Measurin	/ariables for Different Slopes and Intercepts	
Adjusting	for Seasonal Effects	
Eliminatir	ng the Effects of Outliers	284
How to For	ecast with Qualitative Variables	285
Modeling	with a Single Qualitative Variable	285
Modeling	y with Two Qualitative Variables	
iviodeling ۸ ۸۸ultinla	; with Inree Qualitative variables	
		205
Takeaways		290
	Chapter 11 - Gaining Credibility Inrough Root-Ca	USE
	The Diagnostic Checking Process in Forecasting	292
	The Role of Correlation Analysis in Regression Modeling	292
Linear As	sociation and Correlation	293
The Scatt	er Plot Matrix	
The Need	l for Outlier Resistance in Correlation Analysis	
	tritues d Devenue Devenue Francesting	290
Cross-Flag	ticity and Revenue Demand Forecasting	298 299
Other De	mand Elasticities	230
Estimatin	g Elasticities	230
Validating	Modeling Assumptions: A Root-Cause Analysis	302
A Run Tes	st for Randomness	304
Nonrando	om Patterns	
Identifvin	ı Alas 19 linusual Patterns	307 308
Exception H	andlina: The Need for Robustness in Rearession Modelina	
Why Rob		309
M-Estima	itors	
Calculatin	ng M-Estimates	310
Using Rolliı	ng Forecast Simulations	312
Choosing	the Holdout Period	312
Rolling O	rigins	
Measurin Mini Caso:	g Forecast Errors over Lead Time Estimating Elasticities and Promotion Effects	
	en De sedere	
A Four-St	ep Procedure	

	certainty	
Chap	oter 12 - The Final Forecast Numbers: Reconciling Cha	nge & Cha
·····		323
Establ	ishing Credibility	324
Setting Dov	vn Basic Facts: Forecast Data Analysis and Review	
Establishing	g Factors Affecting Future Demand	325
Determinin	g Causes of Change and Chance	325
Preparing F	orecast Scenarios	325
Analyzing Fo	recast Errors	326
Taming Und	ertainty: A Critical Role for Informed Judgment	
Forecast Ac	ljustments: Reconciling Sales Force and Management Overrides	328
Combining	Forecasts and Methods	329
Verifying R	easonableness	330
Selecting 'F	inal Forecast' Numbers	
Gaining Acce	ptance from Management	332
The Forecas	st Package	
Forecast Pr	esentations	
A Demand Fo	precaster's Checklist	334
Case: Creatir	ng a Final Forecast for the GLOBL Company	
Step 1: Dev	eloping Factors	328
Impact Cha	nge Matrix for the Factors Influencing Product Demand	
The Impact	Association MatrixError! Bookmark not defined. for the Chosen Factors	
Exploratory	Data Analysis of the Product Line and Factors Influencing Demand	331
Step 2: Crea	ating Univariate and Multivariable Models for Product Lines	
Handling Ex	ceptions and Forecast Error Analysis	334
Combining	Forecasts from Most Useful Models	336
An Unconst	rained Baseline Forecast for GLOBL Product Line B, Region A	
Step 3: Eva	uating Model Performance Summaries	
Step 4: Rec	onciling Model Projections with Informed Judgment	
Takeaways		
	Chapter 13 - Creating a Data Framework for Agile For Demand Management	orecasting <b>351</b>
	Why Demand Managers Need to Manage a Demand Enrecastin	na Process Th
Indenen	dent of Plans and Taraets	352 352
тасреп		
Data-Drive	n Demand Management Initiatives	
Demand In	rormation Flows	
Creating Plai	nning Hierarchies for Demana Forecasting	
What Are P	lanning Hierarchies?	356
Operating I	ead Times	358
Distribution	Resource Planning (DRP)—A Time-Phased Planned Order Forecast	
Spreadshee	t Example: How to Create a Time-Phased Replenishment Plan	
A Framewor	k for Agility in Forecast Decision Support Functions	361
The Need f	or Agile Demand Forecasting	
Dimensions	of Demand	
A Database	-Driven Forecast Decision Support Architecture	

Specifying Customer/Location Segments and Product Hierarchies	
Automated Statistical Models for Baseline Demand Forecasting	367
Automated Model Selection	
Selecting Useful Models Visually	
Searching for Optimal Smoothing Procedures	
Error-Minimization Criteria	
Searching for Optimal Smoothing Weights	
Starting Values	
Computational Support for Management Overrides	
Takeaways	380



PEERing into the Future: Creating a Framework for Agile Forecasting in Demand Management

	382
The Elephant and the Rider Metaphor Forecasting Does Not Need to Be the Enemy of Agility Creating an Agile Forecasting Implementation Checklist	
Selecting Overall Goals	393
Obtaining Adequate Resources	394
Defining Data	395
Forecast Data Management	395
Selecting Forecasting Software	396
Forecaster Training	396
Coordinating Modeling Efforts	396
Documenting for Future Reference	396
Presenting Models to Management	396
Engaging Agile Forecasting Decision Support	<b>397</b>
Economic/Demographic Data and Forecasting Services Data and Database Management Modeling Assistance Training Workshops The Forecast Manager's Checklists	
Forecast Implementation Checklist	399
Software Selection Checklist	400
Automated Demand Forecasting Checklist	401
Takeaways	<b>402</b>