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This chapter introduces several analytical tools that are useful as regression model diagnostics and in 

situations where normality of the error distribution cannot be assumed. This chapter describes  

• what role correlations and residuals play in validating modeling assumptions 

• how elasticities, both own-price and cross-elasticity, are essential for understanding business 

growth as well as revenue-quantity relationships 

• how a resistant measure of correlation can safeguard making unwarranted statements about 

causation 

• why nonconventional methods are so important in improving the robustness of forecasting 

models in the face of uncertainty 

• why forecast error patterns can give valuable insights into improving forecasting performance 



The Diagnostic Checking Process in Demand Forecasting 

Many demand planners and forecasters proceed by seeing how alike things are. Others proceed by trying 

to understand why things are different. The root-cause analysis of residuals and forecast errors is 

consistent with the latter approach. The diagnostic checking process is designed to reveal departures from 

assumptions about the underlying distribution of random errors and model formulation. It is an important 

phase for demand forecasters to learn about, as it can be a powerful visual tool for assessing the potential 

usefulness of a forecasting model, isolating and correcting unusual values, identifying hidden patterns, 

improving forecast accuracy, and understanding the nature or randomness in time series data. 

A residual analysis may suggest nonlinear relationships, the need for transformations, or a better 

understanding of patterns and events that may not be transparent in the bulk of the 

unexplored data. Forecast error patterns can give valuable insights into improving forecast 

accuracy. And as we shall see, the unplanned findings of correlation analysis in regression 

modeling will often yield the most interesting and important results in a demand 

forecasting application.  

The Role of Correlation Analysis in Regression Modeling 

When demand forecasters have reason to believe that more than one factor (driver of demand) is required 

to solve a demand forecasting or econometric analysis problem, they turn to multiple linear regression 

models. To make forecasts with a multiple linear regression model, one needs to provide forecasts of 

more than one independent (explanatory) variable. When multiple variables are involved, the modeling 

effort can easily become more involved, so it is necessary to start with exploratory data analysis tools to 

get proper insight into the forecast-generating process.  

By focusing only on the fit of the equation, you may discover a useful description of a forecast profile 

(change) but at the same time misspecify the uncertainty (chance), because error assumptions are needed 

in using the equation for forecasting. Also, accurate forecasts of the drivers of demand are needed, and if 

the underlying model errors are not normally distributed, as is usually assumed, there is a need for 

identifying root causes and exceptions. So there is always a trade-off between the goodness of fit and the 

quality of fit in the use of regression models for forecasting applications. 

Recall, In a multiple linear regression (MLR) analysis, the deterministic component (change) takes the 

form of an equation, 

µ Y(X) = β0 + β1 X1 + . . . + βk Xk 

where  X1, . . . , Xk are k independent variables (or regressors), and β0, β1, . . . , βk are called regression 

parameters. This regression equation arises when the variation in the dependent variable Y is assumed to 

be affected by changes in more than one independent variable. Thus, the expected (or average) value of 

Y is said to depend on X1, X2, . . . , Xk. The dependence on X is henceforth suppressed in the notation; Let 

µY(X) = µY. In this case, one speaks of a multiple linear regression of Y on X1. . . Xk. 

The regression equation is called a model when a random error (chance) term is added to the 

equation, which then becomes Y = µY(X) +ε, where ε commonly has an assumed normal error distribution. 

 While the formal theory of normal multiple linear regression analysis is extensive and is dealt with in 

many business statistics textbooks,  of interest here are its application and interpretation in demand 

forecasting problems and those derivations and algorithms that are directly applicable to the 

interpretation of the analysis.  



Adequacy of the model assumptions can be examined through a variety of methods, frequently 

graphical and mostly involving residuals (Actual minus Fit). One must be aware of a range of regression 

pitfalls to be avoided. These include trend collinearity, overfitting, extrapolation, outliers, nonnormal 

distributions, multicollinearity, and invalid assumptions regarding the model errors (e.g., independence, 

constant variance, and, usually, normality). Such inadequate assumptions often point to the root causes 

of not-so-credible forecasts. 

But how does one put a model together? The first step in beginning a regression analysis for demand 

forecasting is to identify the drivers of demand—called factors—independent or explanatory variables 

that are believed to have influenced and expected to continue to influence the (dependent) variable to 

be forecast. The scatter diagram is a useful graphical tool for exploring the relationships among such 

factors.  

The second step is to create a regression model by estimating the coefficients in the model by the 

method of least squares. This will give us a fitted equation from which we can determine the forecast 

profile. 

Linear Association and Correlation  

When the values of one time series (or variable) are paired with corresponding values of a related time 

series (or variable), a relationship between the variables can be depicted in a scatter diagram with one 

variable is plotted on the horizontal scale and the other is plotted on the vertical scale. Such a plot is a 

valuable tool for studying the relationship between a pair of variables. 

When two series have a strong positive association, the scatter diagram reveals a pattern of points 

along a line of positive slope. A negative association shows up as a scatter pattern along a line with 

negative slope. A conventional measure of such linear association between a pair of variables Y and X is 

given by the Pearson product moment correlation coefficient r, where r is an averaging formula using the 

sample mean and sample standard deviation of the two variables, respectively.  

The product moment correlation coefficient is a conventional measure of linear association 

between two variables. 

Although forecasting and statistical software programs routinely calculate r, it is useful to view it as 

the result of an averaging process; namely, of the average of a product of standardized variables: Average 

{(Standardized Yt)*(Standardized Xt)}, with a divisor of (n–1) instead of n, where n is the common number 

of X, Y pairs.  When a variable is standardized, it has a zero mean and a unit standard deviation, which is 

useful for making comparisons and correlations between variables that have very different sizes or scales 

of measurement. 

A standardized value is obtained by subtracting the sample mean from the data and dividing 

by the sample standard deviation. 

Figure 11.1 shows a spreadsheet calculation for obtaining the product moment correlation between 

annual housing starts and mortgage rates. The coefficient can vary between +1 and –1, so that r = –0.20 

suggests a weak negative association between housing starts and mortgage rates.  



Although the product moment correlation coefficient for housing starts versus mortgage rates data 

shown in the figure is only about –0.20, the correlation coefficient for the respective annual change in 

these variables turns out to be –0.57. Both are negative, as expected, but the latter reflects a much 

stronger linear association. This suggests that the strength of the relationship between housing starts and 

mortgage rates is reflected in their respective growth rates, not so much the actual levels.  

The Scatter Plot Matrix 

Creating scatter diagrams to validate a linear association between the dependent variable and each of 

the independent variables, as well as between pairs of independent variables, is an essential step in 

exploratory data analysis for larger datasets. Doing so can save you time when questions arise about root 

causes and exceptions with flawed models. At the same time, the diagrams can provide a better 

understanding of the data-generating process in the underlying relationships 

 

Figure 11.1 Calculation of the product moment correlation coefficient between annual housing starts and 

mortgage rates. (Source: Figure 7.12 Housing starts data; Figure 7.8 Mortgage rates data) 

An arrangement of scatter diagrams between multiple pairs of variables is called the scatter plot 

matrix. We can summarize this by creating a correlation matrix of product moment correlations between 

pairs of variables.  



The diagonal of a correlation matrix consists of 1s because each variable is perfectly correlated with 

itself. At the intersection of each row and column is the correlation coefficient relating the row variable 

to the column variable. 

 Because the matrix is symmetrical, it is useful to display the product moment correlation coefficient 

r on one side of the diagonal and an outlier-resistant version of correlation called r* (SSD)—defined in the 

next section—on the other. To distinguish it from other types of correlation measures, the term ordinary 

correlation coefficient is here used interchangeably with the term Pearson product moment correlation 

coefficient. 

In this way, the demand forecaster gets the necessary insight from the augmented correlation matrix 

for constructing regression relationships. Contrasting r with r* (SSD) may indicate departures from 

linearity due to outlying or non-typical data, so the demand forecaster then needs to review the 

underlying data for nonlinearity in the patterns. An outlier may not necessarily appear visually extreme 

from the bulk of the data in these situations.  

A scatter plot matrix is an array of associations between pairs of variables. 

The Need for Outlier Resistance in Correlation Analysis 

The robust estimator of correlation, known as r*(SSD), is less sensitive to outliers than the ordinary 

correlation coefficient r. It is derived from the standardized sums and differences of two variables, say Y 

and X, as introduced in a 1975 Biometrika paper entitled “Robust Estimation and Outlier Detection with 
Correlation Coefficients,” by Susan J. Devlin, Ram Gnanadesikan, and Jon R. Kettenring.  

The first step in obtaining r*(SSD) is to standardize both Y and X robustly by constructing two new 

variables Y and X: 

Ȳ = (Y – Y*)/SY* and Ẍ = (X - X*)/SX* 

where Y* and X* are robust/resistant estimates of location and SY* 

and SX* are robust/resistant estimates of scale. 

 Now, let Z1 = Ȳ + Ẍ and Z2 = Ȳ - Ẍ, the sum and differences vectors, 

respectively. Then the robust variance of the sum vector Z1` and difference 

vector Z2 are calculated; they are denoted by V+* and V-*, respectively. These 

variances are used in the calculation of the robust correlation estimate 

r*(SSD) given by  

r*(SSD) = (V+* - V-*) / (V+* + V-*). 

The justification for this formula can be seen by inspecting the formula for the variance of the sum of two 

variables: 

Var(Z1) = Var (Ȳ) + Var (Ẍ) + 2 Cov (Ȳ, Ẍ) 

where Cov denotes the covariance between Ȳ and Ẍ. 

Because Y and X are standardized, centered about zero, with unit scale, the expected variance of Z1 is 

approximately 

Var(Z1) ≈ 1 + 1 + 2 ρ (Ȳ, Ẍ) = 2 (1 + ρ) 

where ρ is the theoretical correlation between Ŷ  and X. 

Similarly, for Z2, 



Var (Z2) ≈ Var (Ȳ) + Var (Ẍ) - 2 Cov (Ȳ, Ẍ) 

 = 1 + 1 –2 ρ (Ȳ, Ẍ) = 2 (1- ρ). 

Notice that ρ is given by the expression 

[Var (Z1) –Var (Z2)] / [Var (Z1) + Var (Z 2)] ≈ [2(1+ ρ) - 2(1- ρ)] / [2(1+ ρ) + 2(1 –ρ)] = ρ. 

Some robust estimates of the (square root of the) variance, required in the formula for r* were 

discussed in Chapter 2; these include the unbiased median absolute deviation from the median (UMdAD 

=MdAD/0.6745) and the unbiased interquartile difference (UIQD = IQD/1.349). 

Using Elasticities 

In practice, it turns out that looking at correlations and linear relationships among transformed values of 

variables in a revenue demand model can also be very useful. For example, when using elasticities, the 

period-to-period changes (month-to-month, year-over-year, etc.) and percentage changes are often 

applied to time series modeling for a root-cause analysis.  

Two important determinants of a firm’s profitability—indeed its survival—are cost and the demand 

for its products or services. Demand must exist or be created if the business is to survive. It must also be 

high enough at least to cover fixed costs. Because of its key role, all business-planning activities require a 

careful analysis of demand over time. Demand forecasters also need to be aware of the relationship 

between quantity demanded and price.  

Demand forecasters play an important role in helping to make pricing decisions by estimating 

price elasticities for products and services with regression models. 
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