Blending Agile Forecasting with an Integrated Business Planning Process

agility (əˈjilədē/)
noun
Ability to move quickly and easily.
Ability to think and understand quickly.

This chapter describes
• why competent demand forecasting is an essential component of effective demand planning and management practice
• how Agile Forecasting results from integrating predictive database decision support, automated statistical forecast modeling, forecast uncertainty measurement, and ongoing forecast performance evaluation within a firm’s business planning processes.

After reading this book, you should be able to
• understand the essential nature of a demand forecasting process in a consumer demand-driven supply chain environment
• recognize the components of an efficient and effective forecasting work cycle
• engage with potential forecast users to help define, formulate, execute, evaluate, and support their forecast data requirements and performance metrics
• provide advice on recommendations for forecast data standards, forecast reviews, model checklists, performance measurement activities, and business planning integration.
PEERING into the Future: A Framework for Agile Forecasting in Demand Management

As demand forecasters we must strive to induce needed change—change in the way we deal with data, quantitative and qualitative methods for forecasting, and the uncertainty factor. Change in encouraging planners and managers to rethink their goals for demand forecasting. Motivating them away from how they have always dealt with forecasting: “Hey. forecaster, what are your final numbers?” Getting them to take a different path, a new path. The question is, are we talking to the elephant or the rider?

The Elephant and the Rider Metaphor

The Elephant is the emotional side of motivation, while the Rider is the logical side. Perched atop the Elephant, the Rider holds the reins and seems to be the leader. But the Rider’s control is precarious because the Rider is small relative to the Elephant. Anytime the six-ton Elephant and the Rider disagree about which direction to go, the Rider is going to lose. He’s completely overmatched.

We have to examine how these two internal motivations play together (or not). The most obvious examples we most can relate to are sticking to a diet, staying on an exercise program, or quitting smoking. We know it is the right thing to do (Rider) but we have a difficult time sticking to it (Elephant).

The Elephant and Rider are the yin and yang of our psyche. The Rider is the planner or manager (getting thin on a diet), while the Elephant is attracted to the short term payoff (enjoying an ice cream cone).

Changes often fail because the Rider simply can’t keep the Elephant on the road long enough to reach the destination.

Recall that this book has advocated four key steps in an approach to solving demand forecasting problems. These same steps are key to forming an effective framework for an agile forecasting process.

1. **Prepare:** Define the purpose and role of the job or organization, define the major areas of responsibility, set objectives, and establish indicators of performance.
2. **Execute:** Define short-term goals and action plans, and carry out a plan for each area of responsibility.
3. **Evaluate:** Perform forecast monitoring (define objectives for the forecaster), know what to monitor, develop a measurement plan, develop metrics of forecast accuracy, and develop scores for performance.
4. **Reconcile:** Select the most credible approach, reconcile demand forecasts, support database forecast decision support in the cloud, and get top management involvement.
Purpose and Role. What is the purpose of a demand forecasting job or organization? This requires considerable thought. It is difficult to be agile unless one knows what it is that needs to be accomplished (see Chapter 1). One role of a forecast manager is to serve as an advisor to a company's senior management and managers of end-user organizations. To fulfill the other part of the role, a forecast manager must manage colleagues and their work. Here is a mission statement:

The responsibility of a demand forecasting organization is to provide top-quality advice—primarily about future demand for a firm's products and services under conditions of uncertainty.

One can spend many hours wrestling with the purpose of the job. In addition, developing meaningful indicators of performance is no easy task and can give rise to many debates. Experience will cause us to reject some indicators and replace them with others that are more relevant. Naturally, both the indicators and attendant levels of performance will change over time as the business evolves.

Major Areas of Responsibility. These are the major areas of responsibility that should be defined in short one- or two-word statements. These might be product, revenue, capacity, or asset management forecasting. But almost all managers share some combination of professional self-development, forecasting staff/personnel development, and resource management.

For forecast managers, the key areas of responsibility are likely to include forecast evaluation, measurement, monitoring, presentation, and forecaster appraisal and professional development. Forecaster performance appraisal/development is equally important, but the methods for achieving success in this area are not restricted to forecast managers. (The traditional management literature covers this topic adequately, and it is beyond the scope of this book.)

Set Objectives. Once one has determined the purpose and areas of responsibility of a forecasting discipline, the next step is to develop a long-range objective for each area of responsibility. These objectives should be general enough to have lasting significance, and they should contain an indication of the goal that the actual work should accomplish. Some examples are to

- improve the accuracy of X
- improve the productivity of X
- reduce the cost of X
- improve technical and managerial skills
- improve the credibility of the demand forecasting organization
- ensure the continuing relevance of X

Such objectives are important because they provide the managerial direction and focus that team members can embrace and strive to achieve. Demand forecasters can see how their activities are related to the achievement of organizational objectives. What is implicit in all of these objectives is a striving for improvement that can be translated into actual tasks.
Establish Indicators of Performance. How to define the indicators of performance for the organization? How will the organization know it is making progress toward the achievement of its objectives? What will be the yardsticks? For certain forecasts, one indicator might be the absolute percentage deviation between estimate and actual. For personnel development, indicators might be the demonstrated ability of a demand forecaster to use a new technique in effectively forecasting demand for a new product or service.

Without an understanding of purpose and indicators of performance, we will find it difficult to manage effectively.

Execute

Define Short-Term Goals and Action Plan. With indicators of performance in place, we can turn to the second major step of the Agile Forecasting process: executing a specific short-term goal and action plan for the next 6 to 12 months. If the goal is to improve the accuracy of a forecast item, a reasonable goal may be to improve the accuracy to within a given percentage, say 5 to 20%, depending on the item to be forecast. For professional development, the goal may be to assume responsibility for forecasting new revenues within the next 6 months.

Carry Out a Plan for Each Area of Responsibility. With areas of responsibility clearly stated, the forecast manager must establish specific activities that can lead to measurable results for the demand forecasting staff. Because results are evaluated, the action plan needs to be achievable and carried out in reasonable time frames (weeks or months, rather than years).

Evaluate

Develop Objectives for the Demand Forecaster. At the center of the agile demand forecaster’s role are the analysis and actions that compose the evaluative process. A primary objective of forecast monitoring is to prevent surprising the company with news about unforeseen exceptions to a forecast. The firm should have sufficient time to evaluate alternative courses of action and not be forced to react to unpredicted yet predictable events. A second objective of monitoring is to predict accurately a change in the direction of growth. This involves predicting the turning points in the business cycle and the demand for the firm’s products. Quite often forecasters find it difficult to predict a downturn in demand and instead call for an upturn too soon (see Chapter 7).

It is easy to see why few managers in business find the exercise of managerial control as challenging as the demand forecaster does. Demand forecasters are responsible for a function whose primary output is wholly related to the future environment. Unable to change the environment, the forecaster must instead be prepared to make revisions when it is evident that an original forecast or goal cannot be met with stated precision. In effect, the forecaster is changing some predetermined goal in order to more accurately predict expected performance.

Managerial control is a process that measures current performance, based on available information, and guides performance toward a predetermined goal.

The process of forecast monitoring provides the demand forecaster with an early indication that such changes in forecasts may be required. Through experience, an agile demand forecaster will develop an
improved ability to anticipate change and to advise management so that the firm will have time to adjust operations to changing conditions. This, of course, is a valuable attribute in any forecaster.

At a more demanding level, the objectives of monitoring are to predict changes in the rate of growth, to predict the level of growth and to minimize the impact of forecast changes. The ability to predict any speeding up or slowing down of growth with uncertainty measurement helps management to decide on the proper timing of company plans and programs. Accurate predictions of the level of growth—the forecast numbers themselves—allow management to make sizing decisions about investment in facilities, numbers of employees, and appropriate financing arrangements. Last, it is necessary to minimize the internal disruption that results from changing forecasts too frequently. The demand forecaster could, after all, change a forecast every month so that the final forecast and the actual data are almost identical. However, this does not serve the needs of the firm. Using prediction limits, the demand forecaster must endeavor to minimize the need to override forecasts. The more carefully thought out and thoroughly researched the initial forecast is, the less likely the need for it to be revised or overridden.

Know What to Monitor. There should be a difference between what a demand forecaster monitors and what the manager monitors. Demand forecasters monitor a predictive database that consists of time series, cross-sectional data, and assumptions for customer/geographic segments and product groupings. They are primarily interested in the numerical accuracy of the forecasts, reliable uncertainty measurement, and the credibility of the forecast assumptions.

The manager monitors an enterprise database that is both more general and more selective. Included in this database are the exceptional cases that demand forecasters uncover as a result of their detailed monitoring. The manager is primarily concerned with the implications of the difference between the initial forecast and the evolving reality for the business for which the forecast is made. The manager should know more about that business and generally be more aware of the significance of forecast changes on business performance than need be the demand forecaster.

The specific items that demand forecasters select to monitor will naturally depend on their areas of responsibility. The indicators that are established in the organization’s business plans are natural candidates for monitoring. With the items to be monitored selected, the demand forecaster should

- Consider monitoring composites, or groups of items. Composites often serve as indicators of overall forecast quality and are frequently used as a basis for decision making. They are resistant to individual deviations that may be measurement aberrations and not managerially significant. For example, a forecast of total revenues might be on target, although forecasts of revenues accruing from the sales of a product to residential or business users may need to be adjusted.
- Compare the sum of the components of a forecast to the whole helps to ensure that there is a reasonable relationship between the more stable aggregate forecast and the more volatile bottom-up forecast of many small components. For example, the sum of the individual product forecasts should be compared to a total product-line forecast. In this way, the forecaster can be assured that both upward and downward revisions in the component parts are being made to keep them in reasonable agreement with the total forecast.
- Monitor ratios or relationships between different items. The ratio of a given geographic area’s sales to the total corporate sales is an example of this approach. Another example is the ratio of sales to disposable personal income.
- Monitor time relationships. It may be appropriate to monitor changes or percentage changes over time. The use of seasonally adjusted annual rates is an example, as is the ratio of first quarter to total annual sales.
• Consider monitoring both on a period basis and on a cumulative basis. The sum of the actuals since the beginning of the year should be compared with the sum of the forecasts. This has the advantage of smoothing out irregular, random, month-to-month variations.
• Monitor external factors (drivers of demand). These are the basic key assumptions about business conditions or the economic outlook. Corporate policy assumptions also need to be monitored.
• Monitor user needs. It is possible that budgetary or organizational changes, new or discontinued products, or changes in management will cause changes in the forecast user's needs. Because demand forecasting is an advisory function, demand forecasters need to monitor user needs to be certain that the forecasting service being provided is consistent with evolving business needs. Questionnaires or periodic discussions with users will indicate whether such changes have occurred.
• Monitor similar forecasts in several geographic locations. This will help determine whether a pattern is developing elsewhere that may impact the company or area in the near future. Do any geographic areas of the market generally lead or lag the market as a whole? The forecaster may discover that his or her geographic area is not the only market area with weak or strong demand; a national pattern may be emerging that needs to be tracked.

The items to be monitored should relate to the purposes and objectives of the organization.

Develop a Measurement Plan. A major aspect of forecast process improvement is forecast measurement or results analysis. For any forecaster, improvement in organizational or staff effectiveness depends on measurement. A demand forecaster will find it useful to establish a forecast measurement plan to provide indications of overall performance that can be reviewed with upper management. A properly developed plan will show performance trends and highlight trouble areas.

The measurement plan will provide managers with a tool to assist in evaluating both forecasts and forecasters. When a measurement plan exists, demand forecasters know that they have to explain forecasts that miss the mark. This forces demand forecasters to structure and quantify their assumptions so that there will be documented reasons to explain deviations from forecasts and actuals.

The goal of a measurement plan is to develop meaningful ways of measuring the performance of the demand forecasting organization.

The complete chapter can be found in

Change & Chance Embraced
Contents

Chapter 1 - Embracing Change & Chance

Inside the Crystal Ball

Determinants of Demand
Demand Forecasting Defined
Why Demand Forecasting?
The Role of Demand Forecasting in a Consumer-Driven Supply Chain
Is Demand Forecasting Worthwhile?
Who Are the End Users of Demand Forecasts in the Supply Chain?
Learning from Industry Examples
Examples of Product Demand
Is a Demand Forecast Just a Number?

Creating a Structured Forecasting Process

The PEER Methodology: A Structured Demand Forecasting Process
Case Example: A Consumer Electronics Company

PEER Step 1: Identifying Factors Likely to Affect Changes in Demand
The GLOBL Product Lines
The Marketplace for GLOBL Products
Step 2: Selecting a Forecasting Technique
Step 3: Executing and Evaluating Forecasting Models
Step 4: Reconciling Final Forecasts

Creating Predictive Visualizations

Takeaways

Chapter 2 - Demand Forecasting Is Mostly about Data

Demand Forecasting Is Mostly about Data
Exploring Data Patterns
Learning by Looking at Data Patterns
Judging the Quality of Data

Data Visualization

Time Plots
Scatter Diagrams

Displaying Data Distributions
Creating Data Summaries 44

Typical Values 44
The Trimmed Mean 45
Variability 45
Median Absolute Deviation from the Median 45
The Interquartile Difference 46
Detecting Outliers with Resistant Measures 47

The Need for Nonconventional Methods 48

M-Estimators 49
A Numerical Example 49

Why Is Normality So Important? 51

Case Example: GLOBL Product Line B Sales in Region A 52

Takeaways 54

Chapter 3 - Predictive Analytics: Selecting Useful Forecasting Techniques

All Models Are Wrong. Some Are Useful 56

Qualitative Methods 56
Quantitative Approaches 59
Self-Driven Forecasting Techniques 60
Combining Forecasts is a Useful Method 61
Informed Judgment and Modeling Expertise 62
A Multimethod Approach to Forecasting 64

Some Supplementary Approaches 64

Market Research 64
New Product Introductions 65
Promotions and Special Events 65
Sales Force Composites and Customer Collaboration 65
Neural Nets for Forecasting 66

A Product Life-Cycle Perspective 66

A Prototypical Forecasting Technique: Smoothing Historical Patterns 68

Forecasting with Moving Averages 69
Fit versus Forecast Errors 71
Weighting Based on the Most Current History 73

A Spreadsheet Example: How to Forecast with Weighted Averages 75

Choosing the Smoothing Weight 78
Forecasting with Limited Data 78
Evaluating Forecasting Performance 79

Takeaways 79
Chapter 4 - Taming Uncertainty: What You Need to Know about Measuring Forecast Accuracy

The Need to Measure Forecast Accuracy 82
 Analyzing Forecast Errors 82
 Lack of Bias 82
 What Is an Acceptable Precision? 83

Ways to Evaluate Accuracy 86
 The Fit Period versus the Holdout Period 86
 Goodness of Fit versus Forecast Accuracy 87
 Item Level versus Aggregate Performance 88
 Absolute Errors versus Squared Errors 88
 Measures of bias 89
 Measures of Precision 90
 Comparing with Naive Techniques 93
 Relative Error Measures 94

The Myth of the MAPE . . . and How to Avoid It 95
 Are There More Reliable Measures Than the MAPE? 96

Predictive Visualization Techniques 96
 Ladder Charts 96
 Prediction-Realization Diagram 97

Empirical Prediction Intervals for Time Series Models 100
 Prediction Interval as a Percentage Miss 101
 Prediction Intervals as Early Warning Signals 101
 Trigg Tracking Signal 103

Spreadsheet Example: How to Monitor Forecasts 104

Mini Case: Accuracy Measurements of Transportation Forecasts 107

Takeaways 112

Chapter 5 - Characterizing Demand Variability: Seasonality, Trend, and the Uncertainty Factor 114

Visualizing Components in a Time Series 115
 Trends and Cycles 116
 Seasonality 119
 Irregular or Random Fluctuations 122
 Weekly Patterns 124
 Trading-Day Patterns 124

Exploring Components of Variation 126
 Contribution of Trend and Seasonal Effects 127
 A Diagnostic Plot and Test for Additivity 130

Unusual Values Need Not Look Big or Be Far Out 132

The Ratio-to-Moving-Average Method 134
Chapter 8 - Big Data: Baseline Forecasting With Exponential Smoothing Models

What is Exponential Smoothing? 198
 Smoothing Weights 199
 The Simple Exponential Smoothing Method 201
Forecast Profiles for Exponential Smoothing Methods 202
 Smoothing Levels and Constant Change 204
 Damped and Exponential Trends 208
 Some Spreadsheet Examples 210
 Trend-Seasonal Models with Prediction Limits 216
 The Pegels Classification for Trend-Seasonal Models 219
 Outlier Adjustment with Prediction Limits 221
 Predictive Visualization of Change and Chance – Hotel/Motel Demand 221
Takeaways 225

Chapter 9 - Short-Term Forecasting with ARIMA Models 226

Why Use ARIMA Models for Forecasting? 226
 The Linear Filter Model as a Black Box 227
A Model-Building Strategy 229
 Identification: Interpreting Autocorrelation and Partial Autocorrelation Functions 230
 Autocorrelation and Partial Autocorrelation Functions 231
 An Important Duality Property 233
 Seasonal ARMA Process 234
Identifying Nonseasonal ARIMA Models 236
 Identification Steps 236
 Models for Forecasting Stationary Time Series 236
 White Noise and the Autoregressive Moving Average Model 237
 One-Period Ahead Forecasts 239
 L-Step-Ahead Forecasts 239
 Three Kinds of Short-Term Trend Models 241
 A Comparison of an ARIMA (0, 1, 0) Model and a Straight-Line Model 241
Seasonal ARIMA Models 244
Chapter 11 - Gaining Credibility Through Root-Cause Analysis and Exception Handling 283

The Diagnostic Checking Process in Forecasting .. 284

The Role of Correlation Analysis in Regression Modeling 284

Linear Association and Correlation 285
The Scatter Plot Matrix 286
The Need for Outlier Resistance in Correlation Analysis 287

Using Elasticities 288

Price Elasticity and Revenue Demand Forecasting 290
Cross-Elasticity 291
Other Demand Elasticities 292
Estimating Elasticities 292

Validating Modeling Assumptions: A Root-Cause Analysis 293

A Run Test for Randomness 296
Nonrandom Patterns 297
Graphical Aids 299
Identifying Unusual Patterns 299

Exception Handling: The Need for Robustness in Regression Modeling 301

Why Robust Regression? 301
M-Estimators 301
Calculating M-Estimates 302

Using Rolling Forecast Simulations 304

Choosing the Holdout Period 304
Rolling Origins 305
Measuring Forecast Errors over Lead Time 306

Mini Case: Estimating Elasticities and Promotion Effects 306

Procedure 308
Taming Uncertainty 310

Multiple Regression Checklist 311

Takeaways 313

Chapter 12 - The Final Forecast Numbers: Reconciling Change & Chance 316

Establishing Credibility 317

Setting Down Basic Facts: Forecast Data Analysis and Review 317
Establishing Factors Affecting Future Demand 318
Determining Causes of Change and Chance 318
Preparing Forecast Scenarios 318
Analyzing Forecast Errors 319
Taming Uncertainty: A Critical Role for Informed Judgment 320
Forecast Adjustments: Reconciling Sales Force and Management Overrides 321
Combining Forecasts and Methods 322
Verifying Reasonableness 323
Selecting ‘Final Forecast’ Numbers 324

Gaining Acceptance from Management 325
The Forecast Package 325
Forecast Presentations 326

Case: Creating a Final Forecast for the GLOBL Company 328
Step 1: Developing Factors 329
Impact Change Matrix for the Factors Influencing Product Demand 330
The Impact Association Matrix for the Chosen Factors 331
Exploratory Data Analysis of the Product Line and Factors Influencing Demand 332
Step 2: Creating Univariate and Multivariable Models for Product Lines 334
Handling Exceptions and Forecast Error Analysis 335
Combining Forecasts from Most Useful Models 337
An Unconstrained Baseline Forecast for GLOBL Product Line B, Region A 338
Step 3: Evaluating Model Performance Summaries 341
Step 4: Reconciling Model Projections with Informed Judgment 342

Takeaways 343

Chapter 13 - Creating a Data Framework for Agile Forecasting and Demand Management 344

Demand Management in the Supply Chain 345
Data-Driven Demand Management Initiatives 346
Demand Information Flows 347

Creating Planning Hierarchies for Demand Forecasting 349
What Are Planning Hierarchies? 349
Operating Lead Times 350
Distribution Resource Planning (DRP)—A Time-Phased Planned Order Forecast 350
Spreadsheet Example: How to Create a Time-Phased Replenishment Plan 352

A Framework for Agility in Forecast Decision Support Functions 353
The Need for Agile Demand Forecasting 354
Dimensions of Demand 354
A Data-Driven Forecast Decision Support Architecture 355
Dealing with Cross-Functional Forecasting Data Requirements 358
Specifying Customer/Location Segments and Product Hierarchies 358

Automated Statistical Models for Baseline Demand Forecasting 360
Selecting Useful Models Visually 363
Searching for Optimal Smoothing Procedures 367
Error-Minimization Criteria 368
Searching for Optimal Smoothing Weights 368
Starting Values 368
Computational Support for Management Overrides 369

Takeaways 372
Chapter 14 - Blending Agile Forecasting with an Integrated Business Planning Process 373

PEERing into the Future: A Framework for Agile Forecasting in Demand Management 374

- The Elephant and the Rider Metaphor 374
- Prepare 374
- Execute 376
- Evaluate 376
- Reconcile 381

Creating an Agile Forecasting Implementation Checklist 385

- Selecting Overall Goals 385
- Obtaining Adequate Resources 386
- Defining Data 386
- Forecast Data Management 387
- Selecting Forecasting Software 387
- Forecaster Training 388
- Coordinating Modeling Efforts 388
- Documenting for Future Reference 388
- Presenting Models to Management 389

Engaging Agile Forecasting Decision Support 389

- Economic/Demographic Data and Forecasting Services 389
- Data and Database Management 390
- Modeling Assistance 390
- Training Workshops 390

The Forecast Manager’s Checklists 391

- Forecast Implementation Checklist 391
- Software Selection Checklist 392
- Large-Volume Demand Forecasting Checklist 393

Takeaways 394