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Big Data: Baseline Forecasting With Exponential 
Smoothing Models 
 
 

Exponential smoothing models provide a viable framework for forecasting large volume, disaggregate 

demand patterns. For short-term planning and control systems, these techniques are extremely reliable 

and have more than adequate track record in forecast accuracy with trend/seasonal data.  

This chapter deals with the description and evaluation of techniques that  

• are widely used in the areas of sales, inventory, logistics, and production planning as well as in 

quality control, process control, financial planning and marketing planning 

• can be described in terms of a state-space modeling framework that provides prediction intervals 

and procedures for model selection are well-suited for large-scale, automated forecasting 

applications, because they require little forecaster intervention, thereby releasing the time of the 

demand forecaster to concentrate on the few problem cases  

• are based on the mathematical extrapolation of past patterns into the future, accomplished by 

using forecasting equations that are simple to update and require relatively small number of 

calculations 

• capture level (a starting point for the forecasts), trend (a factor for growth or decline) and seasonal 

factors (for adjustment of seasonal variation) in data patterns 

PREDICTION IS VERY DIFFICULT, ESPECIALLY IF IT IS ABOUT THE FUTURE  

NIELS BOHR (1885-1962), Nobel Laureate Physicist 
  
  
  



What is Exponential Smoothing?  

In chapter 3, we introduced forecasting with simple and weighted moving averages as an exploratory 

smoothing technique for short-term forecasting of level data. With exponential smoothing models, on the 

other hand, we can create short-term forecasts with prediction limits for a wider variety of data having 

trends and seasonal patterns; the modeling methodology offers prediction limits (ranges of uncertainty) 

and prescribed forecast profiles. Exponential smoothing provides an essential simplicity and ease of 

understanding for the practitioner, and has been found to have a reliable track record for accuracy in 

many business applications.    

Exponential smoothing was invented during World War II by Robert G. Brown 

(1923  ̶2013), left, who was involved in the design of tracking systems for fire-control 

information on the location of enemy submarines. Later on, the principles of 

exponential smoothing were applied to business data, especially in the analysis of the 

demand for service parts in inventory systems in Brown’s book Advanced Service Parts 

Inventory Control (1982).  

As part of the state-space forecasting methodology, exponential smoothing 

models provide a flexible approach to weighting past historical data for smoothing and 

extrapolation purposes. This exponentially declining weighting scheme contrasts with the equal weighting 

scheme that underlies the outmoded simple moving average technique for forecasting.  

Exponential smoothing is a forecasting technique that extrapolates historical patterns such as 

trends and seasonal cycles into the future.  

 There are many types of exponential smoothing models, each appropriate for a 

particular forecast pattern or forecast profile. As a forecasting tool, exponential 

smoothing is very widely accepted and a proven tool for a wide variety of short-term 

forecasting applications. Most inventory planning and production control systems 

rely on exponential smoothing to some degree.  

We will see that the process for assigning smoothing weights is simple in concept 

and versatile for dealing with diverse types of data. Other advantages of exponential smoothing are that 

the methodology takes account of trend and seasonal patterns in time series; embodies a weighting 

scheme that gives more weight to the recent past than to the distant past; is readily automated, making 

it especially useful for large-scale forecasting applications; and can be described in a modeling framework 

needed for deriving useful statistical prediction limits and flexible trend/seasonal forecast profiles.  

When selecting a model for demand forecasting, focus on plausible forecast profiles, rather 

than fit statistics and model coefficients.  

 For demand forecasting, the disadvantages are that exponential smoothing models do not easily 

allow for the inclusion of explanatory variables into a forecasting model and cannot handle business 

cycles. Hence, when forecasting economic variables, such techniques are not expected to perform well on 

business data that exhibit cyclical turning points.   



Smoothing Weights  

To understand how exponential smoothing works, we need first to understand the concept of 

exponentially decaying weights. Consider a time series of production rates (number of completed 

assemblies per week) for a 4-week period in the table below. In order to predict next period’s (T + 1) 

production rate without having knowledge of or information about future demand, we assume that the 

following week will have to be an average week for production. A reasonable projection for the following 

week can be based on taking an average of the production rates during past weeks. However, what kind 

of average should we propose?  

 

: Week    Production  

Three periods ago (T - 3) 266  

Two periods ago (T - 2) 411  

Previous (T - 1) 376  

Current t = T 425  

  

Equally Weighted Average. The simplest option. Described in Chapter 3, is to select an equally weighted 

average, which is obtained by given equal weight to each of the weeks of available data:  

(425 + 376 + 411 + 266) / 4 = 370 

This equally weighted average is simply the arithmetic mean of the data, the same basis underlying 

the moving average.. The forecast of next week's production rate is 370 assemblies. Implicitly, we are 

assuming that events of 2 and 3 weeks prior (e.g., the more distant past) are as relevant to what may 

happen next week as were events of the most current and prior week.  

In Figure 8.1, a weight is denoted by wi, where the subscript i represents the number of weeks into 

the past. For an equally weighted average, the weight given to each of the terms is 1/n, where n is the 

number of time periods.  With n = 4, each weight in column 3 is equal to 1/4.  

 

 

Figure 8.1 Smoothing weights. 

If we consider only the latest week, we have another option, shown in column 4 of Exhibit 8.1, which 

is the Naïve_1 forecast; it places all weight on the most recent data value. Thus, the forecast for next 

week's production rate is 425, the same as the current week’s production. This forecast makes sense if 

only the current week's events are relevant in projecting the following week. Whatever happened before 

this week is ignored.   



Exponentially Decaying Weights. Most business forecasters find a middle ground more appealing than 

either of the two extremes, equally weighted or Naïve_1. In between lie weighting schemes in which the 

weights decay as we move from the current period to the distant past. 

w1 > w2 > w3 > w4 >. . . . 

The largest weight, w1, is given to the most recent data value. This means that to forecast next week's 

production rate, this week's figure is most important; last week's is less important, and so forth.  

Many other patterns are possible with decaying weight schemes. As illustrated by column 5 of Figure 

8.1, the weight starts at 40% for the most recent week and decline steadily to 10% for week T - 3. Our 

forecast for week t = T + 1 is the weighted average with decaying weights:  

425 x 0.4 + 376 x 0.3 + 411 x 0.2 + 266 x 0.1 = 392 

This weighted average gives a production rate forecast that is more than that of the equally weighted 

average and less than that of the Naïve_1, in this case.   

An exponentially weighted average refers to a weighted average of the data in which the weights decay 

exponentially.  

The most useful example of decaying weights is that of exponentially decaying weights, in which each 

weight is a constant fraction of its predecessor. A fraction of 0.50 implies a decay rate of 50%, as shown 

in column 6 of Figure 8.1. In forecasting next period’s value, the current period’s value is weighted 0.5, 

the prior week half of that at 0.25, and so forth with each new weight 50% of the one before. (These 

weights must be adjusted to sum to unity as in column 7.) From Figure 8.1, we can see that the adjusted 

weights are obtained by dividing the exponential decay weights by 0.9375.  

 

Figure 8.2 (left) Calculation of weighted averages of past data. 

Figure 8.3 (right) Exponentially decaying weights for simple exponential smoothing.. 

Figure 8.2 illustrates the weighted average of all past data, with recent data receiving more weight 

than older data. The most recent data is at the bottom of the spreadsheet. The weight on each data value 

is shown in Figure 8.3. The weights decline exponentially with time, a feature that gives exponential 

smoothing its name.  



The Simple Exponential Smoothing Method  

All exponential smoothing techniques incorporate an exponential-decay weighting system, hence the 

term exponential. Smoothing refers to the averaging that takes place when we calculate a weighted 

average of the past data. To determine a one-period-ahead forecast of historical data, the projection 

formula is given by  

Yt (1) = α Yt + (1 - α) Yt-1 (1) 

where Yt (1) is the smoothed value at time t, based on weighting the most recent value Yt with a weight α 

(α is a smoothing parameter) and the current period’s forecast (or previous smoothed value) with a weight 

(1 - α).  By rearranging the right-hand side, we can rewrite the equation as   

Yt (1) = Yt-1 (1) + α [Yt - Yt-1 (1)] 

which can be interpreted as the current period’s forecast Yt-1 (1) adjusted by a proportion α of the current 

period’s forecast error [Yt - Yt-1 (1)].   

The simple exponential smoothing method produces forecasts that are a level line for any 

period in the future, but it is not appropriate for projecting trending data or patterns that are 

more complex.  

We can now show that the one-step-ahead forecast Yt (1) is a weighted moving average 

of all past values with the weights decreasing exponentially.  If we substitute for Yt-1 (1) in 

the first smoothing equation, we find that:  

Yt (1) = α Yt + (1 - α) [α Yt-1 + (1 - α) Yt - 2 (1)] 

= α Yt + α (1 - α) Yt-1 + (1 - α)2 Yt - 2 (1) 

  

If we next substitute for Y t-2 (1), then for Y t-3 (1), and so, we obtain the result  

Yt (1) = α Yt + α (1 - α) Yt-1 + α (1 - α)2 Yt - 2   + α (1 - α)3 Yt – 3  + α (1 - α)4 Yt - 4 

+  . . . .    + α (1 - α)t- 1  Y1  +   (1 - α)t Y0 (1) 

  

The one-step-ahead forecast YT (1) represents a weighted average of all past values. For three 

selected values of the parameter α, the weights that are assigned to the past values are shown in the 

following table:   

 

Weight Assigned to:  α = 0.1  α = 0.3  α = 0.5  α = 0.9  

YT  0.1  0.3  0.5  0.9  

YT-1  0.09  0.21  0.25  0.09  

YT-2  0.081  0.147  0.125  0.009  



In Figure 8.4, we calculate a forecast of the production data, assuming that α = 0.5. (The production 

data are repeated in Figure 8.4, in the Actual column.) To use the formula, we need a starting value for 

the smoothing operation - a value that represents the smoothed average at the earliest week of our time 

series, here t = T - 3. The simplest choice for the starting value is the earliest data point. In our example, 

the starting value for the exponentially weighted average is the production rate for week t = T - 3, which 

was given as 266. The final result, YT (1) = 391 (rounded) for week t = T, is called the current level. It is a 

weighted average of 4 weeks of data, where the weights decline at a rate of 50% per week.  

We defined a one-period-ahead forecast made at time t = T to be YT (1). Likewise, the m-period-ahead 

forecast is given by YT (m) = YT (1), for m = 2, 3, . . . .  For a time series with a relatively constant level, this 

is a good forecasting technique. We called this simple smoothing in Chapter 3, but it is generally known 

as the simple exponential smoothing. 

 

 

Figure 8.4 Updating an exponentially weighted average. 

 

 

 

Figure 8.5 (left) Forecasting with simple exponential smoothing – company travel expenses. 

 

Figure 8.6 (right) Simple exponential smoothing: company travel expenses and one-period ahead 

forecasts. 

The forecast profile of the simple exponential smoothing method is a level horizontal line.  



Simple exponential smoothing works much like an automatic pilot or a thermostat. At each time 

period, the forecasts are adjusted according to the sign of the forecast error (actual data minus forecast.) 

If the current forecast error is positive, the next forecast is increased; if the error is negative, the forecast 

is reduced.  

To get the smoothing process started (Figure 8.5), we set the first forecast (cell E8) equal to the first 

data value (cell D8). We can also use the average of the first few data values. Thereafter, the forecasts are 

updated as follows: In column F, each error is equal to actual data minus forecast. In column E, each 

forecast is equal to the previous forecast plus a fraction of the previous error. This fraction is called the 

smoothing weight (cell I2).  

But how do we select the smoothing weight? The smoothing weight is usually chosen to minimize 

the mean square error (MSE), a statistical measure of fit. This smoothing weight is called optimal, because 

it is our best estimate based on a prescribed criterion (MSE).  Forecasts, errors, and squared errors are 

shown in columns E, F, and G.  

The one-step-ahead forecast (=16.6 in cell E20) extends one period into the future. The travel 

expense data, smoothed values, and the one-period-ahead forecast are shown graphically in Figure 8.6. 

Forecast Profiles for Exponential Smoothing Methods 

A system of exponential smoothing models can be classified by the type of trend and/or 

seasonal pattern generated as the forecast profile. The most appropriate technique to use 

for any forecasting should match the profile expected or desired in an application. Figure 

8.7 shows the extended Pegels classification for 12 forecasting profiles for exponential 

smoothing developed by Everette S. Gardner, left, in a seminal paper Exponential 

smoothing: The state of the art, Journal of Forecasting. 1985. 

A Pegels classification of exponential smoothing methods gives rise to 12 forecast 

profiles for trend and seasonal patterns.  

After a preliminary examination of the data from a time plot, we may be able to determine which of 

the dozen models seems most suitable. In Figure 8.7, there are four types of trends to choose from 

(Nonseasonal column), and two types of seasonality (Additive and Multiplicative).   

Each profile can be directly associated with a specific exponential smoothing model (Figure 8.8), as 

described the in the next section (some of which are referred to by a common name attributed to their 

authors). We now explain how each model works to generate forecasts; that is, we describe how each 

model produces the appropriate forecasting profile.  

For a downwardly trending time series, multiplicative seasonality appears as steadily 

diminishing swings about a trend. For level data, the constant-level multiplicative and additive 

seasonality techniques give the same forecast profile.  



 

Figure 8.7 Pegels’ classification of exponential smoothing methods extended to include the damped trend 

technique.  

  

 Model Name  Trend profile   Seasonal Profile   State Space  

     Classification  

        

 Simple (single)  None    None     (N, N)  

 Holt   Additive (Linear)  None     (A, N)  

 Holt-Winters  Additive (Linear)  Additive or Multiplicative  (A, A) or (A, M)  

        

Figure 8.8 Most commonly implemented exponential smoothing methods. 
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