Exponential smoothing models provide a viable framework for forecasting large volume, disaggregate demand patterns. For short-term planning and control systems, these techniques are extremely reliable and have more than adequate track record in forecast accuracy with trend/seasonal data.

This chapter deals with the description and evaluation of techniques that

- are widely used in the areas of sales, inventory, logistics, and production planning as well as in quality control, process control, financial planning and marketing planning
- can be described in terms of a state-space modeling framework that provides prediction intervals and procedures for model selection are well-suited for large-scale, automated forecasting applications, because they require little forecaster intervention, thereby releasing the time of the demand forecaster to concentrate on the few problem cases
- are based on the mathematical extrapolation of past patterns into the future, accomplished by using forecasting equations that are simple to update and require relatively small number of calculations
- capture level (a starting point for the forecasts), trend (a factor for growth or decline) and seasonal factors (for adjustment of seasonal variation) in data patterns

PREDICTION IS VERY DIFFICULT, ESPECIALLY IF IT IS ABOUT THE FUTURE

NIELS BOHR (1885-1962), Nobel Laureate Physicist
What is Exponential Smoothing?

In chapter 3, we introduced forecasting with simple and weighted moving averages as an exploratory smoothing technique for short-term forecasting of level data. With exponential smoothing models, on the other hand, we can create short-term forecasts with prediction limits for a wider variety of data having trends and seasonal patterns; the modeling methodology offers prediction limits (ranges of uncertainty) and prescribed forecast profiles. Exponential smoothing provides an essential simplicity and ease of understanding for the practitioner, and has been found to have a reliable track record for accuracy in many business applications.

Exponential smoothing was invented during World War II by Robert G. Brown (1923–2013), left, who was involved in the design of tracking systems for fire-control information on the location of enemy submarines. Later on, the principles of exponential smoothing were applied to business data, especially in the analysis of the demand for service parts in inventory systems in Brown’s book Advanced Service Parts Inventory Control (1982).

As part of the state-space forecasting methodology, exponential smoothing models provide a flexible approach to weighting past historical data for smoothing and extrapolation purposes. This exponentially declining weighting scheme contrasts with the equal weighting scheme that underlies the outmoded simple moving average technique for forecasting.

Exponential smoothing is a forecasting technique that extrapolates historical patterns such as trends and seasonal cycles into the future.

There are many types of exponential smoothing models, each appropriate for a particular forecast pattern or forecast profile. As a forecasting tool, exponential smoothing is very widely accepted and a proven tool for a wide variety of short-term forecasting applications. Most inventory planning and production control systems rely on exponential smoothing to some degree.

We will see that the process for assigning smoothing weights is simple in concept and versatile for dealing with diverse types of data. Other advantages of exponential smoothing are that the methodology takes account of trend and seasonal patterns in time series; embodies a weighting scheme that gives more weight to the recent past than to the distant past; is readily automated, making it especially useful for large-scale forecasting applications; and can be described in a modeling framework needed for deriving useful statistical prediction limits and flexible trend/seasonal forecast profiles.

When selecting a model for demand forecasting, focus on plausible forecast profiles, rather than fit statistics and model coefficients.

For demand forecasting, the disadvantages are that exponential smoothing models do not easily allow for the inclusion of explanatory variables into a forecasting model and cannot handle business cycles. Hence, when forecasting economic variables, such techniques are not expected to perform well on business data that exhibit cyclical turning points.
Smoothing Weights

To understand how exponential smoothing works, we need first to understand the concept of exponentially decaying weights. Consider a time series of production rates (number of completed assemblies per week) for a 4-week period in the table below. In order to predict next period’s \((T + 1)\) production rate without having knowledge of or information about future demand, we assume that the following week will have to be an average week for production. A reasonable projection for the following week can be based on taking an average of the production rates during past weeks. However, what kind of average should we propose?

<table>
<thead>
<tr>
<th>Week</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three periods ago (T - 3)</td>
<td>266</td>
</tr>
<tr>
<td>Two periods ago (T - 2)</td>
<td>411</td>
</tr>
<tr>
<td>Previous (T - 1)</td>
<td>376</td>
</tr>
<tr>
<td>Current (t = T)</td>
<td>425</td>
</tr>
</tbody>
</table>

Equally Weighted Average. The simplest option. Described in Chapter 3, is to select an equally weighted average, which is obtained by giving equal weight to each of the weeks of available data:

\[
\frac{(425 + 376 + 411 + 266)}{4} = 370
\]

This equally weighted average is simply the arithmetic mean of the data, the same basis underlying the moving average. The forecast of next week's production rate is 370 assemblies. Implicitly, we are assuming that events of 2 and 3 weeks prior (e.g., the more distant past) are as relevant to what may happen next week as are events of the most current and prior week.

In Figure 8.1, a weight is denoted by \(w_i\), where the subscript \(i\) represents the number of weeks into the past. For an equally weighted average, the weight given to each of the terms is \(1/n\), where \(n\) is the number of time periods. With \(n = 4\), each weight in column 3 is equal to 1/4.

If we consider only the latest week, we have another option, shown in column 4 of Exhibit 8.1, which is the Naïve_1 forecast; it places all weight on the most recent data value. Thus, the forecast for next week's production rate is 425, the same as the current week's production. This forecast makes sense if only the current week's events are relevant in projecting the following week. Whatever happened before this week is ignored.

![Figure 8.1 Smoothing weights.](image-url)
Exponentially Decaying Weights. Most business forecasters find a middle ground more appealing than either of the two extremes, equally weighted or Naïve_1. In between lie weighting schemes in which the weights decay as we move from the current period to the distant past.

\[w_1 > w_2 > w_3 > w_4 > \ldots \]

The largest weight, \(w_1 \), is given to the most recent data value. This means that to forecast next week's production rate, this week's figure is most important; last week's is less important, and so forth.

Many other patterns are possible with decaying weight schemes. As illustrated by column 5 of Figure 8.1, the weight starts at 40% for the most recent week and decline steadily to 10% for week \(T - 3 \). Our forecast for week \(t = T + 1 \) is the weighted average with decaying weights:

\[
425 \times 0.4 + 376 \times 0.3 + 411 \times 0.2 + 266 \times 0.1 = 392
\]

This weighted average gives a production rate forecast that is more than that of the equally weighted average and less than that of the Naïve_1, in this case.

An exponentially weighted average refers to a weighted average of the data in which the weights decay exponentially.

The most useful example of decaying weights is that of exponentially decaying weights, in which each weight is a constant fraction of its predecessor. A fraction of 0.50 implies a decay rate of 50%, as shown in column 6 of Figure 8.1. In forecasting next period's value, the current period's value is weighted 0.5, the prior week half of that at 0.25, and so forth with each new weight 50% of the one before. (These weights must be adjusted to sum to unity as in column 7.) From Figure 8.1, we can see that the adjusted weights are obtained by dividing the exponential decay weights by 0.9375.

Figure 8.2 (left) Calculation of weighted averages of past data.

Figure 8.3 (right) Exponentially decaying weights for simple exponential smoothing.

Figure 8.2 illustrates the weighted average of all past data, with recent data receiving more weight than older data. The most recent data is at the bottom of the spreadsheet. The weight on each data value is shown in Figure 8.3. The weights decline exponentially with time, a feature that gives exponential smoothing its name.
The Simple Exponential Smoothing Method

All exponential smoothing techniques incorporate an exponential-decay weighting system, hence the term exponential. Smoothing refers to the averaging that takes place when we calculate a weighted average of the past data. To determine a one-period-ahead forecast of historical data, the projection formula is given by

$$Y_t(1) = \alpha Y_t + (1 - \alpha) Y_{t-1}(1)$$

where $Y_t(1)$ is the smoothed value at time t, based on weighting the most recent value Y_t with a weight α (α is a smoothing parameter) and the current period’s forecast (or previous smoothed value) with a weight $(1 - \alpha)$. By rearranging the right-hand side, we can rewrite the equation as

$$Y_t(1) = Y_{t-1}(1) + \alpha [Y_t - Y_{t-1}(1)]$$

which can be interpreted as the current period’s forecast $Y_{t-1}(1)$ adjusted by a proportion α of the current period’s forecast error $[Y_t - Y_{t-1}(1)]$.

The simple exponential smoothing method produces forecasts that are a level line for any period in the future, but it is not appropriate for projecting trending data or patterns that are more complex.

We can now show that the one-step-ahead forecast $Y_t(1)$ is a weighted moving average of all past values with the weights decreasing exponentially. If we substitute for $Y_{t-1}(1)$ in the first smoothing equation, we find that:

$$Y_t(1) = \alpha Y_t + (1 - \alpha) [\alpha Y_{t-1} + (1 - \alpha) Y_{t-2}(1)]$$

$$= \alpha Y_t + \alpha (1 - \alpha) Y_{t-1} + (1 - \alpha)^2 Y_{t-2}(1)$$

If we next substitute for $Y_{t-2}(1)$, then for $Y_{t-3}(1)$, and so, we obtain the result

$$Y_t(1) = \alpha Y_t + \alpha (1 - \alpha) Y_{t-1} + \alpha (1 - \alpha)^2 Y_{t-2} + \alpha (1 - \alpha)^3 Y_{t-3} + \alpha (1 - \alpha)^4 Y_{t-4} + \ldots + \alpha (1 - \alpha)^{t-1} Y_2 + (1 - \alpha)^t Y_0(1)$$

The one-step-ahead forecast $Y_t(1)$ represents a weighted average of all past values. For three selected values of the parameter α, the weights that are assigned to the past values are shown in the following table:

<table>
<thead>
<tr>
<th>Weight Assigned to:</th>
<th>$\alpha = 0.1$</th>
<th>$\alpha = 0.3$</th>
<th>$\alpha = 0.5$</th>
<th>$\alpha = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_T</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Y_{T-1}</td>
<td>0.09</td>
<td>0.21</td>
<td>0.25</td>
<td>0.09</td>
</tr>
<tr>
<td>Y_{T-2}</td>
<td>0.081</td>
<td>0.147</td>
<td>0.125</td>
<td>0.009</td>
</tr>
</tbody>
</table>
In Figure 8.4, we calculate a forecast of the production data, assuming that $\alpha = 0.5$. (The production data are repeated in Figure 8.4, in the Actual column.) To use the formula, we need a starting value for the smoothing operation - a value that represents the smoothed average at the earliest week of our time series, here $t = T - 3$. The simplest choice for the starting value is the earliest data point. In our example, the starting value for the exponentially weighted average is the production rate for week $t = T - 3$, which was given as 266. The final result, $Y_T(1) = 391$ (rounded) for week $t = T$, is called the current level. It is a weighted average of 4 weeks of data, where the weights decline at a rate of 50% per week.

We defined a one-period-ahead forecast made at time $t = T$ to be $Y_T(1)$. Likewise, the m-period-ahead forecast is given by $Y_T(m) = Y_T(1)$, for $m = 2, 3, \ldots$. For a time series with a relatively constant level, this is a good forecasting technique. We called this simple smoothing in Chapter 3, but it is generally known as the simple exponential smoothing.

<table>
<thead>
<tr>
<th>Week</th>
<th>Y</th>
<th>Actual</th>
<th>$Y_T(1)$</th>
<th>Formula</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T-3$</td>
<td>Y_{T-3}</td>
<td>266</td>
<td>266</td>
<td>$Y_{(T-3)}(1) = Y_{(T-3)}$</td>
<td>72</td>
</tr>
<tr>
<td>$T-2$</td>
<td>Y_{T-2}</td>
<td>411</td>
<td>339</td>
<td>$Y_{(T-2)}(1) = 0.5 \times Y_{(T-2)} + 0.5 \times Y_{(T-3)}(1)$</td>
<td>19</td>
</tr>
<tr>
<td>$T-1$</td>
<td>Y_{T-1}</td>
<td>376</td>
<td>357</td>
<td>$Y_{(T-1)}(1) = 0.5 \times Y_{(T-1)} + 0.5 \times Y_{(T-2)}(1)$</td>
<td>34</td>
</tr>
<tr>
<td>T</td>
<td>Y_T</td>
<td>425</td>
<td>391</td>
<td>$Y_T(1) = 0.5 \times Y_T + 0.5 \times Y_{(T-1)}(1)$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8.4 Updating an exponentially weighted average.

Figure 8.5 (left) Forecasting with simple exponential smoothing — company travel expenses.

Figure 8.6 (right) Simple exponential smoothing: company travel expenses and one-period ahead forecasts.

The forecast profile of the simple exponential smoothing method is a level horizontal line.
Simple exponential smoothing works much like an automatic pilot or a thermostat. At each time period, the forecasts are adjusted according to the sign of the forecast error (actual data minus forecast.) If the current forecast error is positive, the next forecast is increased; if the error is negative, the forecast is reduced.

To get the smoothing process started (Figure 8.5), we set the first forecast (cell E8) equal to the first data value (cell D8). We can also use the average of the first few data values. Thereafter, the forecasts are updated as follows: In column F, each error is equal to actual data minus forecast. In column E, each forecast is equal to the previous forecast plus a fraction of the previous error. This fraction is called the smoothing weight (cell I2).

But how do we select the smoothing weight? The smoothing weight is usually chosen to minimize the mean square error (MSE), a statistical measure of fit. This smoothing weight is called optimal, because it is our best estimate based on a prescribed criterion (MSE). Forecasts, errors, and squared errors are shown in columns E, F, and G.

The one-step-ahead forecast (=16.6 in cell E20) extends one period into the future. The travel expense data, smoothed values, and the one-period-ahead forecast are shown graphically in Figure 8.6.

Forecast Profiles for Exponential Smoothing Methods

A system of exponential smoothing models can be classified by the type of trend and/or seasonal pattern generated as the forecast profile. The most appropriate technique to use for any forecasting should match the profile expected or desired in an application. Figure 8.7 shows the extended Pegels classification for 12 forecasting profiles for exponential smoothing developed by Everette S. Gardner, left, in a seminal paper *Exponential smoothing: The state of the art*, Journal of Forecasting. 1985.

A Pegels classification of exponential smoothing methods gives rise to 12 forecast profiles for trend and seasonal patterns.

After a preliminary examination of the data from a time plot, we may be able to determine which of the dozen models seems most suitable. In Figure 8.7, there are four types of trends to choose from (Nonseasonal column), and two types of seasonality (Additive and Multiplicative).

Each profile can be directly associated with a specific exponential smoothing model (Figure 8.8), as described the in the next section (some of which are referred to by a common name attributed to their authors). We now explain how each model works to generate forecasts; that is, we describe how each model produces the appropriate forecasting profile.

For a downwardly trending time series, multiplicative seasonality appears as steadily diminishing swings about a trend. For level data, the constant-level multiplicative and additive seasonality techniques give the same forecast profile.
Figure 8.7 Pegels’ classification of exponential smoothing methods extended to include the damped trend technique.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Trend profile</th>
<th>Seasonal Profile</th>
<th>State Space Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple (single)</td>
<td>None</td>
<td>None</td>
<td>(N, N)</td>
</tr>
<tr>
<td>Holt</td>
<td>Additive (Linear)</td>
<td>None</td>
<td>(A, N)</td>
</tr>
<tr>
<td>Holt-Winters</td>
<td>Additive (Linear)</td>
<td>Additive or Multiplicative</td>
<td>(A, A) or (A, M)</td>
</tr>
</tbody>
</table>

Figure 8.8 Most commonly implemented exponential smoothing methods.

The complete chapter can be found in

Change & Chance Embraced
Chapter 1 - Embracing Change & Chance

Inside the Crystal Ball

Determinants of Demand
Demand Forecasting Defined
Why Demand Forecasting?
The Role of Demand Forecasting in a Consumer-Driven Supply Chain
Is Demand Forecasting Worthwhile?
Who Are the End Users of Demand Forecasts in the Supply Chain?
Learning from Industry Examples
Examples of Product Demand
Is a Demand Forecast Just a Number?

Creating a Structured Forecasting Process

The PEER Methodology: A Structured Demand Forecasting Process

Case Example: A Consumer Electronics Company

PEER Step 1: Identifying Factors Likely to Affect Changes in Demand
The GLOBL Product Lines
The Marketplace for GLOBL Products
Step 2: Selecting a Forecasting Technique
Step 3: Executing and Evaluating Forecasting Models
Step 4: Reconciling Final Forecasts

Creating Predictive Visualizations

Takeaways

Chapter 2 - Demand Forecasting Is Mostly about Data

Demand Forecasting Is Mostly about Data

Exploring Data Patterns
Learning by Looking at Data Patterns
Judging the Quality of Data

Data Visualization

Time Plots
Scatter Diagrams

Displaying Data Distributions

Overall Behavior of the Data
Chapter 6 - Dealing with Seasonal Fluctuations

Seasonal Influences 141
- Removing Seasonality by Differencing 143
- Seasonal Decomposition 145
- Uses of Sasonal Adjustment 146

Multiplicative and Additive Seasonal Decompositions 146
- Decomposition of Monthly Data 146
- Decomposition of Quarterly Data 151
- Seasonal Decomposition of Weekly Point-of-Sale Data 153

Census Seasonal Adjustment Method 156
- The Evolution of the X-13ARIMA-SEATS Program 157
- Why Use the X-13ARIMA-SEATS Seasonal Adjustment Program? 157
- A Forecast Using X-13ARIMA-SEATS 158

Resistant Smoothing 158

Mini Case: A PEER Demand Forecasting Process for Turkey Dinner Cost 162

Takeaways 168

Chapter 7 - Trend-Cycle Forecasting with Turning Points

Demand Forecasting with Economic Indicators 171
- Origin of Leading Indicators 174
- Use of Leading Indicators 174
- Composite Indicators 176
- Reverse Trend Adjustment of the Leading Indicators 176
- Sources of Indicators 178
- Selecting Indicators 178

Characterizing Trending Data Patterns 180
- Autocorrelation Analysis 180
- First Order autocorrelation 182
- The Correlogram 183
Chapter 10 - Demand Forecasting with Regression Models 258

What Are Regression Models? 259
- The Regression Curve 260
- A Simple Linear Model 260
- The Least-Squares Assumption 260

CASE: Sales and Advertising of a Weight Control Product 262

Creating Multiple Linear Regression Models 263
- Some Examples 264

CASE: Linear Regression with Two Explanatory Variables 266

Assessing Model Adequacy 268
- Transformations and Data Visualization 268
- Achieving Linearity 269
- Some Perils in Regression Modeling 270

Indicators for Qualitative Variables 273
- Use of Indicator Variables 273
- Qualitative Factors 274
- Dummy Variables for Different Slopes and Intercepts 275
- Measuring Discontinuities 275
- Adjusting for Seasonal Effects 276
- Eliminating the Effects of Outliers 276

How to Forecast with Qualitative Variables 277
- Modeling with a Single Qualitative Variable 278
- Modeling with Two Qualitative Variables 279
- Modeling with Three Qualitative Variables 279

A Multiple Linear Regression Checklist 281

Takeaways 282
Chapter 11 - Gaining Credibility Through Root-Cause Analysis and Exception Handling

The Diagnostic Checking Process in Forecasting ... 284
The Role of Correlation Analysis in Regression Modeling .. 284

Linear Association and Correlation 285
The Scatter Plot Matrix 286
The Need for Outlier Resistance in Correlation Analysis 287

Using Elasticities 288
Price Elasticity and Revenue Demand Forecasting 290
Cross-Elasticity 291
Other Demand Elasticities 292
Estimating Elasticities 292

Validating Modeling Assumptions: A Root-Cause Analysis 293
A Run Test for Randomness 296
Nonrandom Patterns 297
Graphical Aids 299
Identifying Unusual Patterns 299

Exception Handling: The Need for Robustness in Regression Modeling 301
Why Robust Regression? 301
M-Estimators 301
Calculating M-Estimates 302

Using Rolling Forecast Simulations 304
Choosing the Holdout Period 304
Rolling Origins 305
Measuring Forecast Errors over Lead Time 306

Mini Case: Estimating Elasticities and Promotion Effects 306
Procedure 308
Taming Uncertainty 310

Multiple Regression Checklist 311

Takeaways 313

Chapter 12 - The Final Forecast Numbers: Reconciling Change & Chance

Establishing Credibility 317
Setting Down Basic Facts: Forecast Data Analysis and Review 317
Establishing Factors Affecting Future Demand 318
Determining Causes of Change and Chance 318
Preparing Forecast Scenarios 318
Analyzing Forecast Errors

- Taming Uncertainty: A Critical Role for Informed Judgment
- Forecast Adjustments: Reconciling Sales Force and Management Overrides
- Combining Forecasts and Methods
- Verifying Reasonableness
- Selecting ‘Final Forecast’ Numbers

Gaining Acceptance from Management

- The Forecast Package
- Forecast Presentations

Case: Creating a Final Forecast for the GLOBL Company

- Step 1: Developing Factors
- Impact Change Matrix for the Factors Influencing Product Demand
- The Impact Association Matrix for the Chosen Factors
- Exploratory Data Analysis of the Product Line and Factors Influencing Demand
- Step 2: Creating Univariate and Multivariable Models for Product Lines
- Handling Exceptions and Forecast Error Analysis
- Combining Forecasts from Most Useful Models
- An Unconstrained Baseline Forecast for GLOBL Product Line B, Region A
- Step 3: Evaluating Model Performance Summaries
- Step 4: Reconciling Model Projections with Informed Judgment

Takeaways

Chapter 13 - Creating a Data Framework for Agile Forecasting and Demand Management

- Demand Management in the Supply Chain
- Creating Planning Hierarchies for Demand Forecasting

A Framework for Agility in Forecast Decision Support Functions

- The Need for Agile Demand Forecasting
- Dimensions of Demand
- A Data-Driven Forecast Decision Support Architecture
- Dealing with Cross-Functional Forecasting Data Requirements
- Specifying Customer/Location Segments and Product Hierarchies

Automated Statistical Models for Baseline Demand Forecasting

- Selecting Useful Models Visually
- Searching for Optimal Smoothing Procedures
- Error-Minimization Criteria
- Searching for Optimal Smoothing Weights
- Starting Values
- Computational Support for Management Overrides

Takeaways
Chapter 14 - Blending Agile Forecasting with an Integrated Business Planning Process 373

PEERing into the Future: A Framework for Agile Forecasting in Demand Management 374

The Elephant and the Rider Metaphor 374
Prepare 374
Execute 376
Evaluate 376
Reconcile 381

Creating an Agile Forecasting Implementation Checklist 385

Selecting Overall Goals 385
Obtaining Adequate Resources 386
Defining Data 386
Forecast Data Management 387
Selecting Forecasting Software 387
Forecaster Training 388
Coordinating Modeling Efforts 388
Documenting for Future Reference 388
Presenting Models to Management 389

Engaging Agile Forecasting Decision Support 389

Economic/Demographic Data and Forecasting Services 389
Data and Database Management 390
Modeling Assistance 390
Training Workshops 390

The Forecast Manager’s Checklists 391

Forecast Implementation Checklist 391
Software Selection Checklist 392
Large-Volume Demand Forecasting Checklist 393

Takeaways 394